
coll
12 1hof.

Varenicusí'
Geography.

9. Devoto Inve.

Aurarumg; leves nnima calidig. ?'apores, Equibus hae rerum consistere vuña iideter Omnix natien ac mortali corpore imstant:

A COMPLEAT SYSTEM General Geography: EXPLAINING

The Nature and Properties of the EAR T H; VIZ.
It's Figure, Magnitude, Motions, Situation, Contents, and Divifion into Land and Waters, Mountains, Woods, Defarts, Lakes, Rivers, छc.
With particular Accounts of the different Appearances of the Heavens in different Countries; the Seafons of the Year over all the Globe; the Tides of the Sea; Bays, Capes, Inands, Rocks, Sand-Banks, and Shelves.
The State of the Atmorphere; the Nature of Exhalations; Winds, Storms, Tornados, है'.
The Origin of Springs, Mineral-Waters, Burning Mountains, Mines, E'c. The Ufes and Making of Maps, Globes, and Sea-Charts. The Foundations of Dialling; the Art of Meafuring Heigbes and Diftances; the Art of Ship-Building, Navigation, and the Ways of Finding the Longitudeat Sea.

> Originally written in $L A T I N$
> By BERNHARDVARENIUS,M.D. Since Improved and Illuftrated

By Sir Isacenewton and DiJurin; And now Tranflated into Englijb; with additional Notcs, Cop-per-Plates, an Alpbabetical Intex, and other Improvements.
Particularly ufeful to Students in the Univerfities; Travellers, Sailors, and all thofe who defire to be acquainted with Mixed Matbematics, Geograpby, Aftronomy, and Navigation.
By MrDUGDALE.

The whole Revifed and Corrected by PeterShaw, M. D.
Elie Srcond edition, with large Zoditions.
In IWO VOLUMES,
LONDON: Printed for STEPHEN AUSTEN, at the Angel and Bible, in St Paul's Cburcb-Yard. 1734.

> Stack
> Annex
> G
> 114
> $V 42 G E$
> 1734
> $v .1$

IHAVE perufed this SYSTEM of GENERAL GEOGRAPHY; and I do recommend it as the moft Ufeful Book upon this Subject.

Cbrij-Hopital, Dec. 14. 1732.
f $A M E S$ HODGSON,
Mafter of the Royal Mathematical School; And Fellow of the Royal Society.

THE

TRANSLATOR's
 PREFACE.

 HE Original of this Work was Re-printed at Cambridge in the Year 1672, for the Ufe of the Students in that Univerfity; and an Advertifement was given of it, the Beginning of the Year following, in the Pbilofopbical Tranfactions (a).

THE Dutch Edition being then out of Print, was carefully corrected, in many
(a) Phil. Tranfact. No. cijs, una cum Tabulis ali91. Pag. 5172. BERNhardi Varenit, M. D. Geographia Generalis; in qua Affectiones generales Telluris explicantur, fumma cura quam plurimis in Locis emendata, ซo 33 Schematilus novis, are in-

Places enlarged and improved, and the neceffary Tables and Scbemes fupplied by the Illuftrious Sir Isaac New ton, at that Time Lucafian Profeffor of Matbématics in that Univerfity.

THE Reafon why this great Man took fo much Care in Correcting and Publifhing our Author, was, becaufe he thought him neceffary to be read by his Audience, the Young Gentlemen of Cambridge, while he was delivering Lectures upon the fame Subject from the Lucafian Cbair. And tho' many Hundreds were then printed at Cambridge, and from that Edition often reprinted abroad; yet by being frequently read in both Univerfities, all the Impreffions were in Time fold off; fo that their Scarcity among the Bookfellers was obferved by the Reverend DrBenteey to be a great Detriment to the Young Gentlemen of Cambridge in perfecting their Studies (b).

WHERE-
(b) Appendix Jurin. Pag. I. Cum fruftra jam ubique fere quarerentur, apud Bibliopolas Varenii exemplaria, idque judicaret magno cum fuventutis A cademica detrimento fieri. Vir Reverendus, nec mibi niff fummo cum Honore nominandus, RicharDus Bentieius is me de quo ma-
jorem aquo pro bonitate fua E Humanitate opinionem conceperat, hortatus of ut nova bujufce Editiones adornande curam fufciperem. Simul monuit utile futurum ut qua inventa, dimidii amplius feculi pof Varenium Spatio, Satis multa fuerant, ea, in Tyronum Gratiam, in Appendicem conferrem, brveiturque explicarem. E-

WHEREUPON this worthy Encourager and Advancer of all Sorts of Literature, importuned the Learned Dr Jurin (as being the fitteft Perfon) to take particular Care of a new Impreffion; and, for the Benefit of the younger.Students, to fupply the Defects of Varenius with an Appendix, containing the later Difcoveries and Improvements.

TO Him therefore is owing that correct Edition of Varenius, with an excellent Appendix, printed in the Year 1712. and Dedicated to DrBentley: which is the Edition from whence the following TranMation was made (c).

I beg leave to infift the more upon this becaufe the Authority of our Author, back'd with three fuch Great and Learned Men, as Sir Isaac Newton, DrBentley, and Dr Jurin, will doubtlefs make an Englijh Edition of this Work more acceptable to an Englifb Reader.
jus ego auCtoritati, tanti Viri, छீ cujus eram beneficiis ornatus maximis, non obtemperare omnino non potui, \&c.
(c) Bernhardi Varenii Geographia Generalis, $\mathfrak{E}^{\circ} c$. adjecta eft Appendix præ-
cipua Recentiorum inventa, ad Geographiam fpectantia, continens, a J Acobo Jurin, A. M. Collegii S. Trinitatis Socio, Eo Schola publica NovocafirenfisArchididafcalo. Cantabrigia 1712. in 8vo.

A 3
IT

IT is therefore unneceffary to add any thing farther in Recommendation of the Author ; or enter into an Encomium of the Work, fince they have both of them fo well recommeded themfelves to the Public already. All that remains is only to indicate what has been farther done in our prefent Englifb Edition.

AND firt, in the Geometrical Part, we have given Demonftrations to feveral Propofitions, where they were wanting, and in a concife Manner explained feveral tedious Demonfrations; or at leaft have directed the Reader where he may find them ready demonftrated: fo that we hope by this Means to incite the Studious to purfue the Matbematical Studies, by giving them certain Specimens of their Excellency.
2. IN the Aftronomical Part, we have ftrengthened our Author's Arguments in Favour of the Copernican Hypothefis; and corrected or illuftrated his Affertions and Propofitions, by others taken from later Authors, or built upon more accurate Obfervations made fince his Time.
3. IN the Pbilofopbical and Pbyfical Part, we have rejected the improbable Conjectures of the Antients, and the unwarrantable Suppofitions of Des Cartes, which our Author feems to be fond of: Inftead

Inftead whereof, we have (with the learned Dr Jurin) introduced the Newtonian Pbilofopby to folve the Pbenomena, as being much more eligible than the Cartefian, for the Agreeable and Geometrical Manner of it's Conclufions. Wherefore we have frequently made ufe of this New Pbilofophy, in the Way of Annotations upon our Author, where he has ufed that of Des Cartes.
4. I N the Geograpbical and Hydrograpbical Part, there is often not the leaft Confonance or Similitude between the Latin and modern Englifh Names of feveral Countries, Iflands, Seas, Streights, \&c. And very often their Names are changed by later Difcoverers, and their Figures and Situations better difcovered fince our Author's Time. Wherefore, in fuch Cafes, we have taken the Liberty to alter their Names, Situations, and Defcriptions, in order to make them conformable to our latert and beft Englifb Maps; deviating as little as poffible from our Author's Senfe; and making ufe of the fame Words as 'tis likely he would have done, had he writ at the fame Time, and in the fame Language. We have done this to avoid, in fome Meafure, Marginal Notes, which muft neceffarily have been inferted to have explained a ftrict Iranflation; but would have been neither entertaining nor inftruA 4
ctive to an Englifh Reader. There Alterations are included in Brackets, and for the moft part diftinguifhed by a differentCharacter.
5. W E have tranflated DrJurin's 'Appendix, and added it to the reveral Paffages of our Author, whereto each Part of it properly belongs.
6. WE have, as much as poffible, endeavoured after our Author's fingular Plainnefs of Expreflion, and perhaps in this may be thought to have imitated him to a Fault; but confidering that we were not fpeaking to the Learned; but to thofe lefs fkilled in Language; we thought it neceffary to endeavour to make the Author underftood, even by Perfons of ordinary Capacities, rather than to render him abftrufe and unintelligible by being too concife and curious in Words and Phrafes.

TO conclude, we have endeavoured to give the Engli/b Reader an ufeful Edition of the Work, rather than one that was Elegant and Polite. And to this Purpofe, we have added, what was never added before, an Alpbabetical Index to the whole.

THE

$$
[\mathrm{ix}]
$$

THE
CONTENTS Of the Firft Volume.
B O O K I.

The ABSOLUTE, or INDEPENDENT C H A P. I.

PRELIMINARIES.

1. Tbe Definition of Geograpby. 2. Divijion.
2. Subject.
3. Properties.
4. Principles.
5. Order.
6. Method of Proof.
7. Origin.
8. Excellency,
9. Divijion of the wobole Work.

C H A P. II.

Preparatory Propofitions from Geography and Trigonometry.

1. Tbree kinds of Magnitude.

2, 3, 4, 5. Definitions of a rigbt Line, Circle, Dia: meter, and Arc.
6. To ereEZ a Perpendicular upon a given Line.
7. To divide a Circle and it's Peripbery into four Quadrants.
S. To divide the Peripbery of a Circle into 360 Degrees.
9. To find tbe Contents of a Rectangled-Triangle.
10. Having the Semi-diameter given, to find the Periphery of a Circle.
11. Having the Periphery given to find the Diameter.
12. The Diameter of a Spbere being given, to find it's curve Surface, and Solidity, or folid Content.
13. Definitions of a Triangle, Sine, Tangent, and mathematical Canon.
14. Two neceffary Theorems.
15. Four neceffary Problems.
16. An Explanation of different Meafures.

> C H A P. III.

Of the Figure of the Earth.
Page 27.

1. Various Opinions concerning the Figure of the Earth.
2. The Eartb's Figure, the primary Property whereon the reft depend.
3. The Arguments that prove it spherical.
4.
5. taken from the Heavens. taken from the Earth.
6. Objections anfwered.

C HAP. IV.

Of the Menfuration and Magnitude of the Earth. Page 41.

1. The Menfuration of the Earth requires a Knowledge of tbree Particulars; viz. Lines, Surface, and Solidity.
2. The different Autbors wbo bave attempted the Menfuration of the Earth.
3. The Metbod of the Arabians. Eratofthenes. Pofidonius. Snellius.
4. T'be firft Terreftrial Metbod.
5. The fecond.
6. The tbird.
7. The Circumference of the Earth; it's Diameter, Surface, and Solid Content, in linear, Square, and cubic Miles.
8. The Errors and Defeets of the feveral preceding Metbods of meafuring the Earth.
9. The Meafure of the Parallels of the Earth.

C H A P. V.

Of the Motion of the Earth.
Page 64.

1. The Motion of the Eartb the Caufe of the Celeftial Appearances, upon the Copernican Hypotbefis.
2. A double Motion, befides the tbird, which is rather an Inclination of the Eartb's Axis.
3. The Arguments for proving thefe Motions.
4. Objections anfwered.
5. The Velocity of this Motion in different Parts of the Earth.

C H A P. VI.

Of the Earth's Place in the Syftem of the World. Page 78

1. Common Opinion places the Eartb in the Centre of the World.
2. The Situation of the Earth, and the Order of the Planets.
3. The Situation of the Earth upon tbe Copernican Hypotbefis.
4. The Diftance the Earth from the Planets.
5. The Difance of the Eartb from the fixed Stars.

xii The CONTENTS.

C H A P. VII.

Of the Subftance, internal Structure, and Compofition of the Earth.

Page 87

1. To explain of what Subftances the Eartb is compofed.
2. The Earth divided into a confifent and fuid Part, and the Atmojpbere ; or into Earth, Water, and Air.
3. How the Eartb and Water bold togetber, and confitute one Globe.
4. The Surface of the Eartb continued, but not the Surface of the Waters.
5. How the Parts of the Earth are, from the Surface to the Center, is uncertain.
6. Tbat Eartb has it's Confiftency and Coberence from Salt.
7. Different kinds of Eartb variouly mixed in the Globe.
8. The Situation and Dipofition of the Parts of the Earth different at different Times.

C H A P. VIII.

Of the Divifion of the Parts of the Earth into integrant Parts of the Sea.

Page 103

1. Part of tbe Eartb covered with Water, and Part not.
2. The dry Parts feparated from eacb otber by the Waters between.
3. Four great Continents enumerated.
4. Ten great Iflands enumerated.
5. Ten moderate Ifands enumerated.
6. Ten Jmall Iflands enumerated.
7. The Jmalleft Iflands enumerated.
8. The Peninfulas, Iftbmufes, and Capes, or HeadLands.
9. Fourteon

The CONTENTS. xiis

9. Fourteen Peninfula's enumerated.
10. The more remarkable Iftmuffes enumerated.

C H A P. IX.

Of Mountains in general, and the Ways of taking their Altitude.

Page 119

1. The Parts of the Earth are of different Altitudes.
2. To find the Heigbt of a Mountain by Altimetry.
3. The Height of a Mountain being given, to find it's Diftance from a certain Place.
4. The Difance being given from whence the Top of a Mountain is firt feen; to find in's Height.
5. The Height of a Mountain being known, to find the utmoft Diftance whereto it may be Seen.
6. The Sun's Height above the Horizon being given at any Time, and the Length of the Sbadow of the Mountain at that Time, to find the Heigbt of the Mountain.
7. The Heigbt of Mountains bears no Senfible Proportion to the Semidiameter of the Earth, or does not binder the Sphericity of the Globe.
8. To explain the Origin of Mountains.
9. Why Rains and watery Meteors are frequent on the Tops of Mountains, wbilft it is fair below.
10. Whether the Surface of a Mountain be more capacious than the Plain it fands on.

CHAP, X.

Of the Differences of Mountains.

1. Some Mountains are large, otbers fmall.
2. The more famous Mountains enumerated.

xiv The CONTENTS.

3. The Tops of Mountains in moft Iflands and HeadLands reach to the middle Region of the Air.
4. To enumerate the Mountains remarkable for their Heigbt.
5. To enumerate the Burning Mountains.
6. To explain the Differences of Mountains.
7. Some Mountains are open, otbers clofe.
8. To enumerate the more famous Promontories.
9. Caves, deep Pits, \&c. oppofed to Mountains.

> C H A P. XI.

Of Mines, Woods, and Defarts. Page 15^{8}

1. The Difference of Mines, and the more famous of them enumerated.
2. The Difference of Woods, and the more famous enumerated.
3. The Differences of Defarts and the more famous enumerated.

C H A P. XII.

Of the Divifion of the Ocean by the Interpofition of the Land.

Page 165

1. The Ocean furrounds the Eartb in a continued Extent.
2. The Parts if the Ocean are of tbree kinds, viz. Seas, Bays, and Streigbts
3. The Ocean divided into four grand Parts, or Oceans,
4. The Parts of the Ocean named.
5. The eminent Bays enumerated, with tbeir Differences.
6. The Enumeration and Differences of Streigbts.
7. The Sea-Coafts traced over the four Quarters, and the Communication of the Parts of the Octan.

The CONTENTS,

C H A P. XIII.

Of certain Properties of the Ocean. Page 181

1. Tbe Surface of the Ocean Spberical.
2. The Sea not bigber tban the Land.
3. Why the Sea feems to rife bigber when viewed at a Diftance from the Sbore.
4. To explain the Origin of Bays and Streigbts.
5. Whetber the Ocean be every where of the fame Height.
6. The Depth of the Ocean may be found in many Places but not in all.
7. Tbe Ocean bas no proper Springs.
8. The Saltness of the Ocean from the Particles of Salt difolved in it.
9. Whetber Sea Water be fweeter at the Bottom.
10. The Sea grows falter towards the Equator, and the Seajons of it's being unequally falt.
11. Why the Rain is fweet on the Sea.
12. Different Sea Waters are beavier than each other, and than common Water.
13. Sea-Water does not freeze so foon as RiverWater.
14. Why the Ocean becomes no larger by receiving So many Rivers.
15. Different Parts of the Ocean bave different Colours.
16. Certain Peculiarities in certain Parts of the Ocean.
17. Why the Sea appears luminous; or fines, by Nigbt, efpecially woben the Waves are violent.
18. The Ocean tbrows up terrefirial and confiftent Bodies to the Sbore.

C H A P. XIV.

Of the Motions of the Ocean, particular it's Flux and Reflux. Page 230 1. Water bas only one natural Motion.

xvi The CONTENTS.

2. When a Part of the Ocean moves, the whole is moved.
3. To obferve the Point of the Compafs wberein tbe Sea moves.
4. The Motion of tbe Sea is eitber direct, vortical, concuffory, or tremulous.
5. Some Motions of the Sea are general, fome particular, and the reft contingent.
6. The Wind caufes the contingent Motions of the Sea.
7. The general Motions of the Ocean double, viz. continued, and ebbing and flowing.
8. Winds often alter the general Motions of the Ocean.
9. The Caufe of the general Motion uneertain.
10. What the Motion of the Flux and Reflux is.
11. Tbe Caufe of that Motion.
12. Why at nerv and full Moon the general Motion of the Sea is more violent; and alfo the Swell larger.
13. Wby on tbe Days of the Equinoxes the general Motion and Swell of the Sea is greater.
14. A great Flux and Reflux on fome Sbores, andion others fcarce fonfible.
15. The Flux of the Sea violent, the Reflux natural.
16. The Flux largeft in thofe Places where the Moons is vertical.
17. The Quantity of the Flux not conftant.
18. The Time of the beginning and ending of the Flux different in different Places.
19. In moft Places the Sea flows to the Sbore fix Hours, and ebbs as many; but in Some Places it flowes longer than it ebbs, and vice ver sâ. 20. Whetber the Flood begins swben the Moon toucbes the Horizon.
20. The Hour being given, wherein the Flood is at it's greateft Heigbt in any Place, on the Day of new Moon; to find the Hour of it's greateft Height for the following Days.

The CONTENTS. xvii

22. The Winds prolong and Borten the Duration of the Flux and Reflux.
23. A great Diverfity in the particular Motion of the Sea.
24. The firft particular perpetual Motion.
25. Tbe jecond \qquad
26. The third
27. The fourth
28. T'be fifth \qquad
29. The $\mathrm{J}_{2} x t b$
30. The feventh -
31. The particular periodical Motions enumerated.
32. Two kinds of Vortices in the Sea.
33. The Caufe of the Tremor in the Sea, with Examples.
34. Why the Pacific Ocean is so calm in fair Weatber, but eafily moved with gentle Winds.

> С Н A P. XV.

Of Lakes, Moors and Bogs.
Page 280

1. Lakes, Moors, and Bogs defined.
2. Four kinds of Lakes.
3. To explain the Origin of thofe Lakes that neitber receive nor fend out Rivers"; and to enumerate them.
4. To explain the Origin of thofe that Send out Rivers, but reccive none.
5. To explain the Origin of thofe that receive Rivers, but fend none out.
6. To explain the Origin of tbofe that botb receive and fend out Rivers.
7. Moft Lakes contain a fre/b but fome a fall Water.
8. Whetber the Cafpian Sea be a Lake or a Bay.
9. Whetber the Euxine be a Lake or a Bay.
10. The Lakes enumerated that bave Ifands ins the middle.

xviii The CONT.E NT S.

11. To make a Lake in a Place aligned; if the thing be pofible.
12. To dry or drain up a Lake.
13. Bogs of two kinds.
14. Bogs contain a fulpbureous Earth.
15. To dry a Bog.

CH A P. XVI.

Of Rivers in general.
Page 295

1. The Definition of Rivers, Rivulets, and Springs, \&c.
2. Torrents and Rivers Sometimes produced by violent Rains, and melted Snow.
3. Moft Rivulets rife from Springs, and Rivers from a Conflux of Rivulets.
4. Rivers enlarged by Rains and melted Snow at different Times of the Year.
5. Tube Causes of Springs, or the Origin of Spring-Water.
6. Some Rivers dip under Ground, and rife again.
7. Rivers diSembogue into the Sea, or Lakes.
8. Fere Rivers become ftagnant.
9. Whether the Cbanels, and Windings of Rivers were made by Nature or buman Induftry.
10. Cbanels, the nearer to the Spring. Head the bigber; and the nearer to the River's mould the deeper.
11. Of Cataracts.
12. Why Rivers are broader in one Part than another.
13. The Cbanels of Rivers fink more or less in one Part than another.
14. Why Some Rivers are rapid, others gentle; and why the fame River is more rapid in one Place than another.
15. Some few Rivers run a direct Course; but moft a winding one, to their Exits.
16. The Lakes tbro which certain Rivers have their Courfe.
17. Moot Rivers the nearer their Mouths, the wider they become.

18. IKe

18. The Water of Rivers contains many Particles of different Metals, Minerals, Sands, oleaginous and other Subfances; as aldo certain subtile Spirits of Vitriol, Salt, Sulphur, \&cc.
-19. The Rivers that have Gold-Sand enumerated.
19. The Waters of moft Rivers differ in Colour, Gravity, and other Qualities.
20. Certain Rivers are So inlarged, at fated Times, as to overflow their Banks.
21. To enumerate the fe Rivers, and their Causes.
22. To explain the Origin and Rife of Springs.
23. To find whether a Spring, or Well, may be made in a Place aligned.
24. To make a Well in a given Spot; if the Thing be possible.
25. To make an apparent Spring in a Place aSsigned; if the Thing be pofible.
26. To bring a River from a Spring, or from another River, to a given Place, if the Thing be poffible.
27. The Art of Levelling, or taking the Fall of Water, \&c.
28. The great Rivers of a long Course enumerated.
29. Certain Rivers bave Whirlpools and Swallows.
30. River-Water lighter than Sea-Water.

CH A P. XVII.

Of Mineral-Waters, Hot-Springs, Etc. Page 359

1. No Water found pure and elementary.
2. Mineral Waters defined.
3. Three general Kinds of Mineral Waters.
4. To explain the Origin of Mineral Waters.
5. That the particular Species of Mineral Waters are infinite.
6. To enumerate the more remarkable and extraordinary Differences of Waters.
7. Of the Acidulx, or tart Waters.
8. Of Hot Springs.

$$
22
$$

9. Of
10. Of oily and uncluous Waters.
11. Of bitter Waters.
12. Of extreamly cold Springs.
13. Of Juch Waters as tranjmute or alter Subfance's.
14. Of poifonous and Mortal Waters.
15. Of coloured Waters.
16. Of Salt-Waters.
17. Of bubbling, or boiling, Springs, and fucb as break forth with a violent Spirit.
18. Springs that run only at fated Times.

C H A P. XVIII.

Of the Change, and Origin of dry Parts and watery, on the Earth.

Page 395

1. To examine the extant Surface of the Earth, and that covered with Water.
2. The Surface of the Land and Water not perpetually the fame.
3. To compute bow much Sand, and bow much Water the Eartb contains.
4. Waters forfake the Shores, and leave them dry an many Accounts; and firt, as in Mears and Bogs. 5. Rivers forfake their Banks and Cbanels, and afford nerw Land.
5. Lakes are dried up, and cbanged to Land.
6. Streights are dried up.

8 Bays are dried up.
9. Parts of the Ocean are dried up.
10. To explain the Origin of Sand-Banks.
11. Whetber Sand-Banks may become a part of the neigbbouring Continent.
12. Iflands are formed feveral Ways.
13. The more extraordinary Ways wherein Iflands are formed.
14. Of Floating Iflands.
15. Rivers change their Cbanels many Ways, or run over new Tracts of Land.

The CONTENTS. xxi

16. Lakes, Meers, and Bogs poffefs Spaces of Land tbey did not occupy before.
17. The Ocean poffeffes new Tracts of Land, wbere it did not appear before.
18. Whetber the entire Surface of the Eartb may be folely poffefed by Water alone, or Land alone.
19. Why tbere are ferw Iflands in tbe middle of the Ocean; but many Sboals of them near Continents, or larger Iflands.
20. Wby Lands prove fertile or barren; and viby on the Sea-Sbore the kind of Earth alters tbat covers the Fields.

C H A P. XIX.

Of the Air and Atmofphere. Page 419

1. Exbalations continually rife from the Parts of the Earth.
2. The State of the Atmo Pphere.
3. Exbalations are tbicker or tbinner at different Times, and in different Places.
4. Various Kinds of Exbalations.
5. The Particles of the Air reflect the Sun's Rays, like a Speculum.
6. The upper Parts of the AtmoJphere are more rarified than the lower.
7. Exbalations are driven upreards by a violent Motion; tho' their natural Tendency is downwards.
8. The Atmofphere when warmed poffefles a larger Space, and wben cold a lefs.
9. To make a Tbermometer, or Weatber-Glas.
10. How, or to what Degree, the Air may be rarified.
11. Why the Air is generally tbick and Cloudy in the Frigid Zone.
12. Why the Air is thin and clear in violently frofty Weather.
13. Why the Air appears thicker at the Horizon.
14. Whetber the Air, or Atmofpbere, be of the fame Heigbt in all Places.

15. The

xxii The C O N T E N T S.
15. The Condenfation and Rarifaction of the Air does not alter it's Heigbt.
16. The Height of the Air tbe Same at all Times, and in all Places.
17. The Atr more condensed in the Winter, and at Nigbt, than in the Summer, and by Day.
18. Tbe different Denfity of the Air in different Places.
19. The middle Region of the Air nearer the Earth in Places contiguous to the Pole.
20. In Places adjacent to the Pole the bot Region of the Air, or the beginning of the upper Region, is more remote.
21. The Rays of the Sun, Moon, and Stars are refraEEed in the Air.
22. On Account of this Refraction the Sun and Moon appear to rife fooner than they ought.
23. The tbicker the Air, the greater the RefraEtion.
24. The thicker the Air, tbe fooner the Sun and Moon appear to rife.
25. The lower the Air that caufes the Refraction, the fooner the Stars appear to rije.
26. The Refraction of a Star may be tbe fame in the fame Situation, tho' the Heigbt of the Air be different.
27. If the Air be tbicker, or lower, in one Place tban in anotber, tbe Sun or Moon will appear fooner in the former than in the latter.
28. If the Air be tbicker and bigber in one Place tban another, the Stars will accordingly be feen to rife fooner, or later.
29. Two Refractions being taken at two Altitudes, to find from thence botb the Heigbt and Thickness of the Air, with Refpect to the Atber, or the Law of RefraEtion.
30. To find the leaft pofible Heigbt of the Atmojpbere.
31. To find the Law of Refraction.
32. To find the Refraction at any Inclination.
33. To find the Refraction at the given Heigbt of a Star. 34. The Light of the Stars, particularly tbe Sun and Moon, are reflected by the Particles of Air.

The C O N T E N T S. xxiii

35. This Reflection is the principal Caufe of the Twiligbt.
36. Wben the τ wilight begins.
37. The Height of the Air not to be found from the Quantity of the Twilight.
38. Thbe Height of the Air, upon a Suppofition tbat a double Reflection is the Caufe of the Twilight.
39. The Heigbt of the Air being given, to compute it's Quantity.
40. The Air bas certain Peculiarities, in certain Places.

C H A P. XX.

Of the Motion of the Air, Winds in general, and the Points of the Compafs.

Page 477

1. Winds defined.
2. Moft Winds blow from one Point to the oppofite.
3. Points of the Compass defined.
4. The Number of Points and Winds.
5. Two and thirty Points and Winds.
6. A more accurate Enumeration of the Points and Winds.
7. The Winds according to the Antients enumerated.
8. Another Enumeration of the Winds.
9. Oppofite Winds.
10. Various Caufes of Winds.
11. Why Winds may blow perpendicularly to the Horizon of a Place.
12. Wby the Winds blow not in continued, but interrupted Blafts.
13. Wby Winds very feldom blow perpendicularly upon a Place from above, but generally oblique.
14. Why the Soutb and Weft Winds are warm.
15. Wby the Weft Winds blow Seldomer tban the Eaft.
16. Wby the North and Eaft Winds are ftronger, and the Soutb and Weft Winds weaker.
17. Why a fmall, tbick, and blackiן Cloud foretels Wind from tbat 2uarter.
18. Wby Winds are frequent in tbe Spring and Autumn.

xxiv The CONTENTS.

19. At what Height, or in what Region of the Air, the Winds blow.
20. To what Difance one and the fame Wind may reach.

C H A P. XXI.

Of particular Winds, and Storms or Tempefts. Page 49 I

1. Some Winds are conftant, otbers not.
2. Some Winds are general, otbers particular.
3. The Caufe of tbe general Winds.
4. Some Winds periodical and Jlated; others uncertain and contingent.
5. The periodical Winds enumerated.
6. The Caufe of the Etefian Winds.
7. Why the Etefian are not found in many Places.
8. Some Winds peculiar, otbers common.
9. Certain windsperiodical at certain Hours.
10. Nortbern Winds moft frequent in Places near the Nortb Pole.
11. Four Species of Winds.
12. Certain impetuous and fudden Winds.
13. Their Kinds exemplified.
14. Tornados, or Travados.
15. Cataracts, or Exbydrias.
16. Ecnepbias, or leffer Exbydrias.
17. Typhon, or Orancban.
18. Wbetber certain Winds burft out of the Earth, or rife from the Water.
19. Whetber a certain Wind may rife from the Flood of tbe Sea and Rivers.
20. the Caufes of the Brotbers at Sea; or Caftor, Pollux, and Helena in Tempefts.
21. Why Calms are So frequent in Part of tbe Ethiopic Ocean, under the Equator; efpecially on the Guinea Coaft.
22. Storms and Tempefts anniverfary in certain Piaces:

THE

ABSOLUTE PART

0 F

Univerfal Geography.

S E C T. I. PRELIMINARIES.

> С Н A P. I.

Of the Definition, Division, Method, \&ec, of GEOGRAPHX.

Thath been an antient Cuftom for thofe that fully treat of any Art, or Science, to premife fomewhat of it's Origin, Nature, Confitution, \&cc. And this Procedure is not improper, provided it be clear of all fophiftical Equivocation ; becaufe from fuch Preliminaries the Reader may conceive an Idea of the Work, or at leaft the Subftance thereof, and fo proceed more advifedly therein. We fhall therefore here offer a few Particulars as to the Nature, Ufe, and Defign of Geograpby. YOL.I.

The Definition of Geograpby.

GEOGRAPHX is that part of mix'd Matbematics, which explains the State of the Earth, and of it's Parts, depending on Quantity, viz. it's Figure, Place, Magnitude, and Motion, with the Celeftial Appearances, $E^{\Im} c$.

B Y fome it is taken in too limited a Senfe, for a bare Defcription of the feveral Countries; and by others too extenfively, who along with fuch a Defcription would have their Political Conftitution. But the Authors who proceed thus are excufable, becaufe they do it only to excite and delight the Reader, who might otherwife be the lefs attentive to a bare Enumeration and Defcription of the Countries, without fome Knowledge of the Manners, and Cuftoms of the Inhabitants.

The Divijon of Geograpby.

WE divide Geograpby into General and Special, or Univerfal and Particular. Golnitzius fays, Geograpby is to be explained externally and internally; but thefe Terms are improper, and ill chofen, Univerfal and Particular being much more pertinent. We call that Univerfal Geograpby which confiders the whole Earth in general, and explains it's Properties without regard to particular Countries: But Special or Particular Geograpby defcribes the Conftitution and Situation of each fingle Country by itfelf; which is twofold, viz. Cborograpbical, which defcribes Countries of a confiderable Extent; or Topograpbical, which gives a View of fome place or fmall Tract of the Earth.

IN this Book, we fhall exhibit Univerfal Geograpby, which may be divided into three Parts, Abfolute, Relative, and Comparative. In the Abjolute

Снар. I. of Univerfal Geography.
Part we fhall handle what refpects the Body of the Earth itfelf, it's Parts and peculiar Properties; as it's Figure, Magnitude, and Motion; it's Lands, Seas, and Rivers, Esc. In the Relative Part we fhall account for the Appearances and Accidents that happen to it from Cele 1ial Caufes: and, laftly, the Comparative Part fhall contain an Explication of thofe Properties, which arife from comparing different Parts of the Earth together (a).

The SubjeEt of Geography.

THE Object; or Subject, of Geograpby is the Earth; efpecially it's Superficies and exterior Parts.

The Properties of Geograpby.

THE Things which feem to be moft worthy of Obfervation in every Country are of three kinds, viz. Celeftial, Terreftrial, and Human. The Celefial Pros perties are fuch as affeet us by reafon of the apparent Motion of the Sun, and Stars. Thefe are eight in Number: 1. The Elevation of the Pole, or the Diftance of a Place from the Equator. 2. The Obliquity of the Diurnal Motion of the Stars above the Horizon of that Place. 3. The Time of the longeft and ßorteft
(a) The Honour of reducing Geograpby to Art and Syftem was referved to Ptolemy; who by adding Mathematical Advantages to the Hiftorical Method, in which it had been treated of before, has defcribed the World in a much more Intelligible Manner: he has delineated it under more certain Rules, and by fixing the Bounds of Places, from Longitude and Latitude, hath both difcovered others

Miftakes, and hath left us a Method of difcovering his own.

There is one thing yet very lame in our Geograpty, the fixing the true Longitude of Places; and tho' feveral new Ways have been lately tried, to redrefs this Inconvenience, both from exact Pendulums, and from Obfervations upon the Immerfions and Emerfions of 'Tupiter's Satellites, yet they have not al-

Day.

Day. 4. The Climate and Zone. 5. Heat, Cold, and the Seafons of the Year; with Rain, Snow, Wind, and otber Meteors: and tho' thefe may feem Terreftrial Properties, yet becaufe they chiefly depend upon the Motion of the Sun, and the four Seafons of the Year, we have reckoned them among the Celeftial Matters. 6. Thbe Rijing, Appearance, and Continuance, of the Stars above the Horizon. 7. The Stars that pafs tbro' the Zenith of a Place. 8. The Celerity of the Motion with wobich, according to the Copernican Hypotbefis, every Place conftantly revolves. And according to Aftrologers a nintb Property may be added; for they affign fome Country or other to every one of the twelve Signs of the Zodiac, and the Planets which are Lords of thefe Signs; but fuch imaginary Qualities feem fuperftitious and vain to me; nor do I perceive any reafonable Foundation for them (a). Thus far the Celeftial Properties.

WE call thofe Terreftrial Properties that are obferved in the Face of every Country; which are ten in Number. 1. The Limits and Bounds of each Country. 2. It's Figure. 3. It's Magnitude. 4. It's Mountains. 5. It's Waters, viz. Springs, Rivers, and Bays. 6. It's Woods and Defarts. 7. The Fruitfulness and Barrennefs of the Country, witb it's various kinds of Fruits. 8. The Minerals and Foffls. 9. Thbe living Creatures there. 10. The Longitude of the Place: which might be comprehended under the firft of thefe Properties.
(a) Tho' this Art be of great Antiquity, it is rejected and exploded by moft knowing People of this Age ; and only Impoftors, or fome weak Pretenders to Learning, now practife it, in thefe Parts of the World. It is however, even
to this Day, venerated in mot Eaffern Countries, efpecially 2mong the Indiaws; where nothing is done of any Confequence, before the Aftrologer determines a fortunate Hour to undertake it. See Robault's Pbyics Part 2. Cbap. 27.

Chap. 1. of Univerfal Geography.

THE third kind of Obfervations, to be made in every Country, we call Human, becaufe they chiefly refpect the Inhabitants of the Place; and thefe are alfo ten in Number. 1. Their Stature, Sbape, Colour, and the length of their Lives; their Origin, Meat, and Drink. 2. Their Arts, and the Profits which arife from them; with the Merchandife and Wares they barter with one another. 3. Their Virtues and Vices, Learning, Capacities, and Scbools. 4. Their Ceremonies at Birtbs, Marriages, and Funerals. 5. The Language which the Inbabitants ufe. 6. Their Political Government. 7. Their Religion and Cburcb Government. 8. Tbeir Cities and famous Places. 9. Tbeir remarkable Hiftories. 10. Tbeir famous Men, Artificers, and the Inventions of the Natives.

THESE are the three kinds of Occurrences to be explained in Special Geograpby; and tho' the laft Sort feem not fo properly to belong to this Science, yet we are obliged to admit them for Cuftom fake, and the Information of the Reader.

IN Univerfal Geograpby (which is the Subject of this Book) the abfolute Divifion of the Earth, and the Conftitution of it's Parts, will firf be examined; then the Celeftial Phænomena, in general, that are to be applied to their refpective Countries, in Special Geograpby; and laftly there will follow in the Comparative Part fuch Confiderations as occur from comparing the Phænomena of one Place with another.

The Principles of Geograpby.
THE Principles from which Arguments are drawn for proving Propofitions in Geography are of three forts. 1. Geometrical, Arithmetical, and Trigonometrical Propofitions. 2. Aftronomical Precepts and Theorems (tho' it may feem ftrange we fhould have Recourfe to the Celeftial Bodies, which are diftant from us fo many Millions of Miles, for Undertanding the Nature of the Earth we inhabit): 3. Experience; becaufe the greateft Part of Geography, and chiefly the Special, is founded only upon the Experience and Obfervations of thofe who have defcribed the feveral Countries.

Thb Order of Geography,

THE Order we have thought moft conve, nient to follow in General Geograpby, is already mentioned in the Divifion and Explication of it's Properties; yet there remains a Doubt as to the Order to be obferved in explaining thefe Properties : viz, whether we fhould apply them to their relative Countries in which they are found, or refer the Countries themfelves to the Properties accounted for, in general. Arifotle, in his firft Book of Animals, moves the fame Doubt; and argues at large, whether the Properties fhould be adjufted to the general Account of Animals, or the Animals ranked under the Account of their Properties, The like Difficulty occurs in other Parts of Philofophy. However we fhall here firft explain fome general Properties; and after apply them to their refpective Countries.

The Proof of Geograpby.

IN proving Geographical Propofitions we are to obferve; that feveral Properties, and chiefly the Celeftial, are confirmed by proper Demonitrations: But in Special Geograpby (excepting the Ce leftials) almof every Thing is explained without Demonftration; being either grounded on Experience and Obfervation, or on the Teftimony of

Chap. r. of Univerfal Geograpby. our Senfes: nor can they be proved by any other Means. For Science is taken either for that Knowledge which is founded on Things highly probable; or for a certain Knowledge of Things which is gained by the force of Argument, or the Teftimony of Senfe; or for that Knowledge which arifes from Demonftration in a ftrict Senfe, fuch as is found in Geometry, Arithmetic, and other Mathematical Sciences; excepting Chronology and Geography; to both which the Name of Science, taken in the fecond Senfe, doth moft properly belong.

THERE are alfo feveral Propofitions proved, or rather expofed to view, by the artificial Terreftrial Globe, or by Geographical Maps; moft of which might be confirmed by a ftrict Demonftration ; tho' omitted on Account of the Incapacity of fome Readers. Other Propofitions cannot be fo well proved, yet are received as apparent Truths. Thus tho' we fuppofe all Places on the Globe, and in Maps, to be laid down in the fame Order as they really are on Earth; neverthelefs in thefe Matters we rather follow the Defcriptions that are given by Geographical Authors. Globes and Maps, indeed, made from fuch Obfervations, ferve well enough for Illuftration, and the more eafy Comprehenfion of the Thing.

The Origin of Geography.

T HE Origin of Geography is not of late Date, nor was it brought into the World as it were at one Birth; neither was it invented by one Man: but it's Foundations were laid many Ages ago. It is true, indeed, the old Geographers were employed only in defcribing particular Countries, either in whole, or in part. The Romans, when they had overcome and fubdued any Province, ufed to ex- pofe the Cborograpby thereof to the Spectators in their Triumphs, delineated upon a Table, and flourifhed round with Pictures. There were alfo at Rome, in the Portico of Lucullus, feveral Geographical Tables expofed to public View. The Senate of Rome, about one hundred Years before the Birth of Chrift, fent Geographers and Surveyors into the feveral parts of the Earth, that they might meafure the whole ; tho' they fcarce vifited a twentieth Part of it, Neco, alfo, King of Egypt, many Ages before Chrift, commanded that the Extremities of Africa Thould be diligently fearched into; which was performed by the Pbanicians in the fpace of three Years. Darius commanded that the Mouths of the River Indus, and the whole Etbiopic Sea, to the eaftward, fhould be diligently examined into. Alexander the Great, as Pliny tells us, in his Afatic Expedition, carried along with him two Geographers, Diogenes and Beto, to meafure and delineate to him his Journies; from whofe Journals and Obfervations the Geograpbers of fucceeding Ages borrowed many Things. And tho' the Study of all other Arts was almoft abolifhed by the Wars, Geograpby and Fortification were improved thereby.

NEVERTHELESS the Geograpby of the Antients was very imperfect, and commonly full of falfe Relations; becaufe they knew little or nothing of thefe Places of the Earth which are of moft Cons fequence to be known ; or at leaft they had no certain Experience about them. For, 1. all America was entirely unknown to them. 2. So were the remoteft Northern Countries. 3. The South Continent and the Country of Magellan. 4. They knew not that the World could be failed round, or that the Earth was furrounded by the Ocean, in an uninterrupted Continuity: Some indeed of the Antients I confefs were of this Opinion, but I deny they had any Certainty of it. 5. They knew not that
that the Torrid Zone was inhabited, by an almort infinite number of People. 6. They were ignorant of the true Meafure of the Earth, tho' they writ a great deal on that Subject. 7. They did not think that Africa could be failed round, (b) becaufe the South Parts thereof were unknown to them. 8. Both the Greeks and Romans wanted true Defcriptions of the Countries remote from them, and have łeft us a great many forged and fabulous Stories, concerning the People that live in the Borders of Afia, and thofe that inhabit the Northern Parts of the Earth (c). 9. They were ignorant of the general Motion of the Sea, and the Difference of Currents in particular Places. 10. The Grecians, even Arifotle himfelf, did not know the Reafon of the Ebbing and Flowing of the Sea. 11. Few of them underftood the Variation of the Winds; and the
(b) It is likely the antient Egyptians had fome Knowledge of the extream Parts of Africa, as appears from what Herodotus relates, viz. "That Neco, King " of Egypt, (2200 Years ago) of having furnifhed certain Pboe" nicians with Ships; thefe fet" ting Sail for the Red-Sea, and " coafting along Africa, doub" led the Cape of Good Hope; ${ }^{6}{ }_{5}$ and after two Years fpent " $\%$ in the Voyage entered the "Streights of Gibraltar, in " the third. Herod. Lib. 4 .
(c) C.Plinii Nat. Hijf. Lib. 5 . Cap. 8. Blemmyis traduntur capita abeffe, ore $\mathcal{0}$ oculis pectori affixis. The Blemmyi are faid to be without Heads, having their Mouths and Eyes fixed in their Breafts. Ibid. Lib. 7. Cap. 2. Ari pafpi uno oculo in fronte media infignes: quibus affidue bellume sfle sirca metalla sum Grypbis.

Et alibi, cauda villofa bomines nafri pernicitatis eximia. The Arimafpi are famous for having only one Eye fixed in the middle of their Foreheads, between whom and the Gryffons there is a continual War carried on about their Metals. In another Place there are a fort of grinning Apih People, born with long hairy Tails, and very fwift of Foot. From which Romantic Stories of Pliny, Sir \mathcal{F}. Mandeville took his lying Reports, of his meeting (in his Travels,) with thefe very People, and alfo fome, in the Torrid Zone, that to guard themfelves againft the Scorching Heat of the Sun, had one of their Feet fo large, that by lying on their backs, and holding it up againft the Sun, would fereen them againft it's immoderate Heat; with other the like whimfical Relations.

Periodical,

Periodical, or Trade-Winds, were never dreamt of by them. 12. The noble Property of the LoadStone, which fhews the North and South, was unknown to them; tho' they knew it's Virtue of attracting Iron. And Anaximander, who lived about 400 Years before Chrift, was the firft that attempted to give the Dimenfions of the Eartb (a).

The Excellency of Geography.

THERE are three Things that recommend the Study of Geograpby. I. It's Dignity s and in that it greatly adorns Man, the Inhabitant of the Earth endowed with Reafon above all other Animals, to underftand the Nature of Countries, and the Conftitution of the Earth. 2. It is as well a pleafant, as an innocent Recreation. 3. There is an abfolute neceffity for the Knowledge of it ; becaufe neither Divines, Pbyfcians, Lareyers, Hiforians, nor other Men of Letters, can well proceed in their Studies without interruption, unlefs they have fome Knowledge of Geography ; as it hath been obferved by others, and illuftrated by feveral Examples.

HERE follow two Tables, whereof the firft may ferve for the Contents of this Book; which
(a) The Moderns have detected many Errors of the Antients, and very much improved Geograpby, by opening a Paffage to a New World, and by difcovering that thofe Parts of the Old which were thought uninhabitable, to be inhabited; the Torrid Zone is known to be temperate, and, by refrefhing Showers and conftant Breezes, and cold Nights ; and the Globe. itfelf has been compaffed by feveral, both Englifh and Foreign Sailora. But there yet remains
much of the Globe undifcovered. There is a valt Southern Continent, as yet fcarce lookt into. The northern parts of Ame rica, are yet undifcovered: Africa, tho' it hath been compaffed round and round from the Me diterranean to the Red-Sea, yet little more than it's Coafts are throughly known, except Egypt and $A b a \sqrt{2} a$. It's inland parts have been either not fufficiently viewed or imperfectly defcribed.

- contains

Снар. 1. of Univerfal Geograpby. 1 I contains Univerfal Geography: the other fhews the Order that ought to be obferved by thofe that treat of Special Geograpby.

WE dịide Univerfal Geography into tbree Parts, viz.
I. THE $A B S O L U T E P A R T$, fubdivided into fix Sections, whereof

SECTION I. contains two Chapters of PRELIMINARIES.

SCbap. I. The Introduction or Preface.
\{Chap, II. Some Geometrical Propofitions of ufe in the Work.

SECT. II. In which the Nature of the Earth is explained, in five Chapters.
(Cbap. III. Of the Figure of the Earth.
Cbap. IV. Of it's Meafure and Magnitude,
Cbap. V. Of it's Motion.
Cbap. VI. Of it's Situation in the Syttem of the World.
Cbap. VII. Of it's Subftance and Matter.
S ECT. III. In which the Conftitution of the Earth and it's Parts are explained, in four Chapters.

Cbap. VIII. Of the Divifion of the Earth by Water,
Cbap. IX. Of Mountains in general.
Cbap. X. Of the Differences of Mountains.
C.Cbap, XI, Of Woods, Defarts, and Mines.

SECT. Constitution of the Waters, and their Properties are explained, in fix Chapters.
\{ Chap. XII. Of the Division of the Waters by the Earth.
Cbap. XIII. Of the Ocean and Sea.
Chap. XIV. Of the Motion of the Sea, viz. it's Flux and Reflux.
Chap. XV. Of Lakes, Meres, and Moraffes.
Chap. XVI. Of Rivers.
Chap. XVII. Of Mineral Waters.
SECT. V.
$\left\{\begin{array}{l}\text { Clap. XVIII. Of the extraordinary Changes of } \\ \text { the Sea into Land, and dry } \\ \text { Places into watery. }\end{array}\right.$
SECT. VI. Of the Atmosphere.
Cap. XIX. Of the Atmosphere and Air.
Clap. XX. Of Winds in general.
Clap. XXI. Of the different forts of Winds.
II. THERELATIVEPART explains the Celeftial Properties, in nine Chapters.
\{Cbap. XXII. Of the Celeftial Properties in general
Chap. XXIII. Of the Latitude of the Place, or the Elevation of the Pole.
Chap. XXIV. Of the Division of the Earth into Zones.
Chap. XXV. Of the Length of Days, and the Divifion of the Earth into Climates.

С н а of Univerfal Geography. $^{\text {. }}$

Cbap. XXVI. Of Light, Heat, and the Seafons of the Year.

Cbap. XXVII. Of Shadows, and how the Inhat bitants are divided according to them.
Cbap. XXVIII. Of comparing the Celeftial Phxnomena, in different Places. Of the Antect, Periaci and Antipodes.
Cbap. XXIX. Of the Difference of Time in different Places.
Cbap. XXX. Of the different Rifing of the Sun and Moon, and other Phxnomena.
III. THE COMPARATIVE PART confiders the Particulars arifing from comparing the Phenomena of one Place, with thofe of another.

Cbap. XXXI. Of the Longitude of Places.
Cbap. XXXII. Of the Situation of Places in refpect of one another.
Cbap. XXXIII. Of the Diftances of Places.
Cbap. XXXIV. Of the Vifible Horizon.
Cbap. XXXV. Of Navigation, in general, and Ship-Building.
Cbap. XXXVI. Of Lading and Ballafting of Ships.
Cbap. XXXVII. The Nautical Directory, Part 1. Of Diftances.

Cbap. XXXVIII. Part 2. Of the Points of the Compas.
Cbap. XXXIX. Part 3. Of a Ship's Courfe. Cbap, XL, Part 4. Of the Ship's Place in her, Yoyage.

Special Geograpby exhibits three kinds of Particulars. Ten of them are Terreftrial;

1. The Limits and Bounds of the Country.
2. The Longitude and Situation of Places.
3. The Figure of the Country.
4. It's Magnitude.
5. It's Mountains; their Names, Situations, Altitudes, Properties, and Things contained in them.
6. It's Mines.
7. It's Woods and Defarts.
8. It's Waters ; as Seas, Rivers, Lakes, Marhes, Springs; their Rife, their Origin, and Breadth; the Quantity, Quality, and Celerity of their Waters, with their Cataracts.
9. The Fertility, Barrennefs, and Fruits, of the Country.
10. It's living Creatures.

The Celeftial Properties are eight.

1. The Diftance of the Place from the Equator and Pole.
2. The Obliquity of the Motion of the Stars above the Horizon.
3. The Length of the Days and Nights.
4. The Climate and Zone.
5. The Heat and Seafons: Wind, Rain, and other Meteors.
6. The Rifing and Continuance of the Stars above the Horizon.
7. The Stars that pafs thro' the Zenith of the Place.
8. The Celerity with which each Place revolves; according to the Copernican Syftem.

> Chap. 2. of Univerjal Geography. 5

THE Human Particulars are ten.

1. The Stature of the Inhabitants; their Meat, Drink, and Origin.
2. Their Arts, Profits, Commodities, and Trade.
3. Their Virtues and Vices; their Capacities and Learning.
4. Their Ceremonies at Births, Marriages, and Funerals.
5. Their Speech and Language.
6. Their Political Government.
7. Their Religion and Church Government.
8. Their Cities.
9. Their memorable Hiftories.
10. Their famous Men and Women, Artificers and Inventions.

C H A P. II.

Some Propofitions in Geometry and Trigonometry, of use in Geograpby.

PL ATO very juftly called Geometry and Arithmetic the two Wings whereby the Minds of Men might mount up to Heaven; that is, in fearching after the Motions and Properties of the Celeftial Bodies. Thefe Sciences are no lefs ufeful in Geography; if we defire to underftand it's fublime and intricate Parts, without any Hinderance. It is true, a lefs thare of Mathematics will ferve for Geography, than Aftronomy: but becaufe feveral are taken with
the Study of Geograpby, who do not underftand there Sciences, we fhall here fet down a few Propofitions from them, fuch as we think moft neceffary; that the Reader may proceed the more readily without Interruption in his Study. Tho', by the way, we do not at all encourage that bad Cuftom fome young Gentlemen have got, in applying themfelves unadvifedly to other Parts of Philofophy, before they have a competent Knowledge in Aritbmetic and Geometry. The Fault is very often in their Mafters and Tutors, who are for the moft Part ignorant of thefe Things themfelves, and therefore cannot admonifh Youth to fhun fo pernicious a Cuftom. In Aritbmetic we fuppofe the Reader to know the four common Rules of . Numeration, viz. Addition, Subfraction, Multiplication, and Divifion, with the Golden Rule, or Rule of Tbree; and therefore fhall not treat of them here. If any one underftand them not, he may learn them much better from fome able Teacher, than from Books.

1. BUT as to Geometry, it treats of three forts of Magnitudes, by which every Thing is meafured; viz. Lines, Superficies, and Solids: neither can there be found in Nature a Body of any other Dimenfion.
2. A LINE is either ftraight or curved; and a Curve again is either uniform as circular, or diffimilar and variable, as the Ellipfe, the Conchoid, and Spiral Line.
3. A CIRCLE is a Space or plain Superficies bounded with a curve Line, wherein there is a Point from which all right Lines drawn to the Curve are equal. The curve Line which bounds that Space is called the Circumference, or Peripbern of the Circle; and the middle Point is called the Center (a).

> (a) Euclid Lib. 1. Def. 15, i6,
4. THE Diameter of a Circle is a right Line drawn thro' the Center, and terminated at both ends by the Periphery: one half of which is called the Semidiameter, or Radius (a).
5. A N Arcb is part of the Periphery of a Circle. A Quadrant is a fourth Part of the whole Periphery. What an Arch wants of a Quadrant is called the Complement of that Arch: and it's Difference from a Semicircle it called it's Supplement (b).

$$
P R O B L E M .
$$

6. HAVING a rigbt Line given and a Point eitber in, or out of it, to drawe tbro' that Point a Line perpendicular to the former.

LET the Line given (Fig. 2.) be AB , and the Point C : open the Compaffes fo, that fetting one Foot in C, you may with the other cut the Line given in $d f$; then one Foot being placed at d, with the other defcribe an Arch, as $g b$; alfo make f the Center, and with the fame Radius defrribe another Arch, which will cut the former in g and b; fo draw the Line $g b$; which will be the Perpendicular required.
7. TO divide a Circle and it's Peripbery into four equal Parts. Draw a Diameter, and from the Center raife to it a Perpendicular, which prolonged will be alfo a Diameter; whereby both the Circle and it's Periphery will be divided into four equal Parts (c).
8. TO divide the Periphery of a Circle into Degrees. A Degree is the 360th Part of the Circumference, Mathematicians always divide the Periphery into

$$
\begin{array}{ll}
\text { (a) Euclid Lib. 1. Def. } 17 . & \text { (c) Ibid. Prop. 4. Lib. iv. } \\
\text { (b) Ib Prop. 11, 12. Lib. 1. } & \text { C } \\
\text { V O L. I. }
\end{array}
$$

fo
fo many equal Parts (d) ; and each of thefe Parts into 60 fmaller Divifions, called firt Minutes; alfo each Minute into 60 Seconds, E'c. commonly writ thus, 3 degr. 2. min. 5 fec. that is, 3 Degrees, 2 Minutes, 5 Seconds. Hence the Quadrant containeth 90 Degr. the Semicircle 180, and the fixth Part of a Circle 60 Degrees.

THEREFORE to folve this Problem, divide the Periphery into Quadrants, then take off the Semidianeter, and with it's Length cut an Arch from the Periphery (e), which will be equal to 60 Degr. fo there remains in the fame Quadrant 30 Degr. which being bifected you will have 15 Degr. this again mechanically trifected will give 5 Degr. which divided into five equal Parts make fo many Degrees, Q. E. F. But this is done more artificially by mathematical Inftruments (f).
9. TO find the Area of a Quadrangle, or a Space contained in a Figure of four Sides, and four Rigbt Angles. Multiply one fide by the other, and the Product is the Area. It is to be obferved that Lines are meafured by Lines, and Superficies by Meafures that are Superficies, or Squares; alfo the Contents of folid Bodies, which have their Dimenfions, are computed in folid Meafure, or fo many Cubes. Thus we meafure the Sides of a Houfe by a lineal Foot, the Floors and Wainfoot by a
(d) This Divifion of a Circle into 360 Parts, or Degrees, is becaufe that number can be divided into more Aliquot Parts, than any other convenient Number, viz. into 2, 3, 4, 5, 6,8 and 9 Parts.
(e) Euclid.Prop. 1 5. Lib.iv.
(f) By a Line of Chords truly divided; thus, from any Point in the Periphery lay on the Chord of one Degr. then
from the fame Point lay on the Chord of two Degr. fo of three Degr. E®'c.'till you come to 90 Degr. then begin again as before 'till the whole Periphery is divided. By this means you will avoid the Errors which may arife from the intermediate Divifions, and tho' thefe Errors fingly confidered are very fmall, yet in fo many Degr. they will produce one very fenfible.
fquare Foot, and the Space it enclofeth, confidered as a Solid, by a cubical Fout.
10. HAVING the Diameter or Semidiameter of a Circle, to find the Peripbery in the Same Meafure: and converfly, baving the Periphery given to find the Diameter as near as poffible (g). The Solution of this Problem depends upon the determined Proportion of the Diameter to the Periphery, which is nearly as 7 to 22 ; as is demonftrated by Arcbimedes; or more accurately, as 10000000000 is to 1 1,415926535 (b). For Example, let the DiaMeter be 12 Foot; by the Golden Rule, as 7 is to 22 : fo is 12 to the Periphery of the Circle; or if you ufe the other Proportion it will be much the fame.

BUT if the Periphery be given, and the Diameter be required, fay; as 22 is to 7 , or as 31415926535 to 1000000000 , fo is the Periphery given to the Diameter required.
II. THE Diameter and Periphery of a Circle, or eitber of tbem, being given in Miles or Feet, to find

Abstract

(g) See Tacquet's felect Theorems of Arcbimedes, Prop. 5. (b) Tho' it be well known that the Periphery of a Circle is incommenfurable to the Diameter, yet either of thefe Proportions will ferve well enough for common Ufe. But no Proportion in fmall Numbers is fo exact as that of Andrew Metixs, viz. 113 to 355 , which is found not to differ from the Truth above $100{ }^{3}$ 000. But if the Reader defireth the nicelt Computation of the Proportion of the Diameter of a Circle to the Circumference (altho' that of Matius comes very near), let him have recourfe to the labosious Calculus of Van Ceulen,

who carried his Calculation to 35 places of Decimal Fractions. Or if he would flill be more nice and curious, he may have recourfe to Mr Abr. Sbarp's Calculation, to double the Number of Vau Caulen's Fractions. By which Exactnels the Circumference of the Terraqueous Globe, may be computed to a Degree leis than the Breadth of a Grain of Sand: yea, more than this, the number of the Grains of Sand, that would be contained in a Space as big as the Sphere of the Fixt Stars, might be truly computed by this means. Vid. Matb. Tables printed for Mr Mount, page 53, \&c. the Area of tbat Circle in Square Miles, or Square Feet. Multiply one half of the Periphery into the Semidiameter, and the Product will be the Area required (i): but if you have only one of them given, you may find the other by the laft Problem: Or it may be done without it (k).
12. THE Diameter, or Semidiameter, of a Globe being given; to find it's Superficies in Square, or it's Solidity in Cubic Meafure.

A Globe is a round folid Body, having a certain Point in the Center of it, from whence all right Lines drawn to the Surface are equal: and a Line drawn thro' this Point is the Diameter, about which if the Globe be revolved it is called it's Axis (l). Moreover if a Globe be cut any how by a right Line, the Section is a Circle; if thro' the Center the Circle will have the fame Diameter as the Globe itfelf; and fuch are called the greater Circles of the Sphere or Globe, and the reft leffer Circles. To folve the Problem (m) : By the tenth Article, find the Periphery; then multiply the Diameter into this Periphery, and the Product will be the Superficies of the Globe in fquare Meafure, which multiplied into the $\frac{1}{6}$ of the Diameter, will produce the Solidity of the Globe in cubic Meafure.
(i) As is demonftrated by Arcbimedes, Prop. i. De Dimenfone Circuli.
(k) By faying, as the Square of 1 (which is 1) is to 7854 (the Area of a Circle whofe Diameter is I) fo is the Square of any other Diameter to it's Area; By Prop. 2. Lib. ii. of Euclid. The famons M. Leibnitz has demonftrated, that if the Diameter of a Circle be 1 , the true Area will be $\frac{1}{1}$ -

$$
\begin{aligned}
& \frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}- \\
& \frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17} \\
& -\frac{1}{19}+\frac{I}{2 I}, \& c . \\
& \text { (l) Euclid. Lib. ii. Def. 14, } \\
& \text { 15, 16, } 17 . \\
& \text { (m) See this demonftrated in } \\
& \text { Tacquet's Select Tbeorems of Ar- } \\
& \text { cbimedes, Scbolium 2, of Prop. } \\
& 24 \text {, and that of Prop. } 28 .
\end{aligned}
$$

Сhap. 2. of Univerfal Geography.

 2113. A R1GHT angled Triangle batb two fides perpendicular to each other (or make an Angle of 90 Degr.) which two fides are called the Catbeti, or Perpendiculars, and the third fide the Hypotenufe.

T HE Meafure of an Angle is the Length of an Arch defcribed from the angular Point as a Center : that is, as many Degrees as the Arch between the Legs of the Angle doth contain; fo many Degrees the Angle is faid to be of. Thus a right Angle is 90 Degr. becaufe the Arch fo defcribed is a Quadrant.

THE right Sine of an Arch is a right Line drawn from the one end of the Arch perpendicular to the Diameter, which paffeth thro' the other end (n).

THE Tangent of an Arch is a right Line which touches the Arch at one end, and is bounded at the other with a Line drawn thro' the Center, and the other end of the Arch; which Line is called the Secant of that Arch.

M O R E O VE R, the Sine, Tangent, and Secant, of an Angle, are the fame of the Arch which meafureth the Angle.
(n) Mr Wbifon in his Notes upon Tacquet's Euclid, has neatly explained the Origin of Sines, Tangents, and Secants. Coroll. to the 47 th Prop. Lib. i. which we fhall here tranfcribe. Let A C tbe Semidiameter of a Circle (Fig. 3.) be of 100.000 Parts, and toe Angle B A D of 30 Deg. becaulfe tbe Cbord or Subtenfe of 60 Degr. is equal to AC the Semidiameter (by Prop. 15. Lib. iv. Euclid) B D the Sine of 30 Degrees feall be equal to one balf the Semidiameter, or $\frac{1}{2}$ A C; and therefore ßall contain 50.000 Parts. But nozo in the right-angled Triangle

A B D, the Square of A B is equal to the Square of A D and B D. Therefure let the Semidiameter A B be squared, and from that Square fubftrail the Square of B D: Tbe Remainder will be the Square of A D or of the Co-jine B F equal to it : out of woibicb extratz the Square Root, and you zuill bave the Line B F or A D. Then by this Analogy as A B: BD::AE: CE or $A D: B D:=A C: C E$, foyou bave the Tangent CE. And if tbe Square of A C be added to the square of C E , the Root of the Sun being extra7ed reill be the Secant A E. थ E. I.

IT is alfo necefflary to be known that Tables have been calculated by the great Labour and Induftry of fome Mathematicians, in which the Diameter being taken for 100000 , \mathcal{G} c. the Sines, Tangents, and Secants, are found out in proportional Numbers; as of 2 Degr. 10 Degr. 20 Degr. 32 Min. E c. Thefe Tables are called mathematical Canons, and are of extraordinary ufe in all mathematical and phyfical Sciences; wherefore I am willing to give fome Hints of thefe things to the young Geographer. But becaufe fpherical Triangles have fome Difficulty in their management, and regard none but thofe who defire to be deeper fkilled in this Science, we fhall pars them by ; and only treat of right-angled Triangles, the meafuring of which is as eafy as neceffary.

Two THEOREMS.

14. T'HE three Angles of every Triangle, taken togetber, are equal to two right Angles, or 180 Degr. and therefore the two acute Angles of a right angled Triangle make exactly 90 Degr. (0). Alfo if a right Line toucb a Circle, and there be drawn from the Point of Contact another rigbt Line to the Center, that Line makes a right Angle weith the Tangent (p). 15. THE moft neceffary Problems are thefe.
I. THE Hypotenuse and one fide of a rigbt angled Triangle being given, to find either of the acule Angles. Say by the Golden Rule; As the given Hypotenufe is to the given fide: 10 is the Radius 100000 (which Number is affumed equal to the Semidiameter in the Tables) to the Sine of the oppofite Angle; which Sine being found in the Tables

[^0]will thew the Quantity of the Arch or Angle oppofite to the Side given; and the other Angle is the complement of that now found, to 90 Degr.
II. ONE fide and the acute Angle next it being given, to find the Hypotenufe. Say as before; As the Sine of the Complement of the given Angle is to the Radius 1000000 : fo is the Side given to the Hypotenufe fought.
III. H AVING two Sides given, to find eitber of the acute Angles. Say, As either of the Sides is to the other, fo is the Radius 100000 to the Tangent of the Angle adjacent to the Side firft affumed.
IV. HAVING the Hypotenufe and one acute Angle given, to find eitber of the Sides: Say; As the Radius 100000 is to the Sine of the Angle oppofite to the Side required: So is the given Hypotenufe to that Side.

Of Divers Meafures.

BECAUSE the ufe of Meafures is frequent in Geography, and fince divers Nations ufe different Meafures, 'tis proper to premife fomewhat concerning them; partly that the Reader may the better underftand the Writings of the antient Geographers and Hiftorians; and partly that he may compare together thofe in ufe at this Day.

THE Length of a Foot is almoft univerfally made ufe of, tho' a Foot in one Place differs from that in another. Mathematicians frequently meafure by the Rbinland Foot of Snellius, which he proves to be equal to the old Roman Foot. And becaufe Snellius was very diligent and aecurate in meafuring the Earth, that Rbinland Foot

$$
\mathrm{C}_{4} \text { of }
$$ other Meafures (q). See half it's Lenghh, Fig. I.

A PERCH or Pole ought to confift of ten fuch Feet. But the Surveyers in Holland make 12 Feet a Rbinland Perch, and in Germany they compute 16; which is very incommodious in Calculation. Snelius makes the Holland Mile equal to 1500 Rbinland Perches (each Perch being 12 Foot) or 1800 Rbinland Feet.

T'HESE two Meafures, a Perch and a Mile arife from the repetition of a Foot; but a Palm an Inch, and a Barley-Corn (which are fometimes ufed in Holland) proceed from it's Divifion. An Inch is the twelfth Part of a Foot. A Palm is 4 Inches. A Barley-Corn is the fourth Part of an Inch. However it would be much better to divide the Foot into 10 Inches, and the Inch into 10 Subdivifions or Seconds. E'c.

THESE are the Meafures now made ufe of by the Dutcb in Geography. It remains that fome others be alfo taken Notice of ; viz. thofe of the Antients, whether Greeks, Romans, Perfians, EEgyptians; and thofe alfo of later Times as of the Turks, Polanders, Germans, Mofcovites, Italians, Spaniards, French, and Englijb.
(q) Becaufe the Knowledge of an Englijh, Frerin, and Rbinlandifb Foot will be of ufe in what follows, we will here give their Proportions: to which we thall add the Meafure of the old Roman Foot, taken from Dr

Bernard's Treatife of Weigbts and Meafures, where he moft learnedly confutes the great Er ror of Snellius in this Matter.

If an Englifs Foot be divided into 1000 Parts, and a Frencb Foot into 1440. Then

Снар. 2. of Univerfal Geography.

THE Grecian Stadium, or Furlong, is fuppofed to be 600 of their Feet, which make 625 Roman, or Rbinland, Feet; their Foot being a little larger than the Roman.

A GERMAN Mile (15 of which Geographers allow to a Degree) contains 22800 Rbvyland Feet, and is accounted 4000 Paces, or 32 Furlongs. It is in Proportion to the Rbinland Mile, as 19 to 15 .

THE Italian or Roman Mile is 1000 Paces, which is equal to 4000 Rbinland Feet. Note, The Romans ufed to call their Mile Lafis, becaufe a Stone was erected at the end of every Mile; efpecially in Places adjacent to the City.

A GEOMETRIC AL Pace is exactly 5 Feet; and a Fatbom 6 Feet; which is thought by fome to have been the Pace of the Grecians.

A CUBIT is fuppofed to be a Foot and a half.
THE Parafange, or Perfian Mile, is thought to be 30 Furlongs, or 3000 Perfian Paces.

T HE Scbcnus, or Egyptian, Mile, according to Herodotus, contains 60 Furlongs, tho' only 40 according to Pliny. Perhaps their Length differed in divers Places, or the Furlongs of the Authors might be unequal : Or very likely their Books are corrupted.

THE French League is in Proportion to the Rbinlandifh Mile, as 19 to 25; and the Spanibs League is to the fame Mile, as 19 to $27^{\frac{1}{2}}$: But becaufe in feveral Parts of France and Spain their League is found to differ, we cannot be well affured of the Length of thefe Meafures.

THE Englijb Mile is in Proportion to the Rbinlandif, as 19 to 55 , or as 19 to $60,(r)$. But
there

[^1]there are three forts of Englifh Miles, whereof 27年 of the longett, 50 of the middle Kind, and 60 of the fhortelt, make a Degree or 19 Dutch Miles.

THE Dani/b and Sroedi/b Mile is to the Rbinlandijb Mile as 19 to 10 ; tho' in fome Places they ufe the German Mile.

THE Voref, or Rufian, Mile is as 19 to 80.
THE Turkib League or Mile is faid to be equal to the Italian Mile; of which 60 make a Degree.

T HE Arabian League was formerly accounted the twenty fifth Part of a Degree, or 19 Holland Miles: but they now ufe another of which 56 make a Degree.

A HUNDRED Indian Miles are thought to equal a Degree. Tho' the Indians commonly defcribe Diftances by a Day, or an Hour's Journey.

THE Inhabitants of Cambaya and Guzarat, ufe a Meafure which they call Coffa, of which 30 make a Degree.

THE Cbinefe obferve three Meafures in their Journies, which they call $L i, P u$, and $U_{c h a n} . L i$ is the Diftance at which a Man's loud Voice may be heard on a Plain, in a calm Air ; which is accounted 300 Geometrical Paces. Their $P u$ contains io $L i$'s;

A Table of Englith Meafure.

fo that $20 P u$'s make a Degree. And $10 P u$'s make an Ucban, or 30000 Paces; which they account a day's Journey.

Note, A Square Rbinland Mile confifts of Square Feet and a Cubic Mile of Cubic Feet. Alfo a Mile multiplied into itfelf makes a Square Mile; and that again by a Mile makes a Cubic Mile. The fame is to be underftood of a Square and Cubic Foot.

S E C T. II.

Containing fome general and abfolute Properties of the Earth, in five Cbapters.

C H A P. III.
Of the Figure of the Earth.

THE firft and nobleft Property of the Earth (as exceeding the reft in being more ufeful and neceffary) is it's Figure; without the Knowledge of which there can be nothing well underftood or demonftrated in this Science; and all the following Propofitions almoft entirely depend on, or immediately flow from, this; which for that Reafon ought to be firft treated of.

THERE have been, and are to this Day, feveral Opinions about the Figure of the Earth; for the Vulgar that underftand not Geography, imagine it to be extended into a vaft Plain bounded with a Circular Line ; except where Mountains and Vallies interpofe. Of this ftrange Opinion was Lactantius and others of the Fathers, who ftrenuoufly argued that the Earth was extended infinitely downwards, of Scripture which they either ill underftood or wrong interpreted. Heraclitus, that antient Philofopher, is faid to have been of their Opinion: tho' others fay, he fuppofed the Earth to be in the Shape of a Skiff or Canoo, very much hollowed. But what is more ftrange Francis Patricius (a modern Philofopher of no fmall Repute in the laft Age) ftrenuounly endeavoured to prove, that the Earth was horizontally ftretched out and plain under Foot. Anazimander is faid by Peucerus to have fuppofed the Earth like a Cylinder ; tho' that is not fo probable, becaufe he tried to meafure it, and alfo invented a fort of a Dial at Lacedamon, upon which the Top of the Gnomon by it's Shadow marked out the Days of the Equinoxes, and Solfices: which fhewed him to have been tolerably fkilled in Afirowomy, confidering the Time he lived in. Leucippus alfo thought the Earth to be in the Shape of a Drum. Thefe with a great many other abfurd Opinions, are by Arifotle and others attributed to the Antients: of which fee Arifotle Lib. ii. Cap. 13. de Ceelo.

BU T the true and undoubted Opinion, which is defended by all Mathematicians, and almoft all Philofophers, is, That the Earth is of a globular or fpherical Figure (b).

THE

(a) See Lactantius Lib. iii. Cbap. 24. and Augufin Lib. xvi. Cbap. 9. De Civit. Dei. They thought their Opinion was favoured by the Pfalmift. Pfal. xxiv. 2. and cxxxvi. 6.
(b) Among the many excellent and wonderful Inventions of the modern Pilofophers, this here is not certainly in the laft Place, nor hath the leaft

Honour and Admiration in it; that the true Figure of the Earth, which Men have inhabited for fo many thoufand Years, is but now begun to be known a few Years ago. For that which all Men thought to be globular and truly fpherical, is now found to imitate rather an oval Figure, or that of an Ellipfis revolved about it's leffer

Axis: So that thofe Diameters are longet which come nearelt the Equator, and leffen as they become more remote, but the leaft Diameter of all is the Axis which joineth the two Poles. The Thing will perhaps be better underltood if it be reprefented by a Figure.

Let ap.qp (Fig.4.) bea circular Section of the Earth made by the Meridian, fuch as it was thought to be formerly and $p p$ the Axis or Dismeter joining the Poles, and a q the Diameter of the Equator: then the oval Line $\not \subset P Q P$, defcribed upon the Diameter $\notin Q$ and PP, will reprefent the Section or true Meridian Line, which for Diftinction fake is made here to differ more from a Circle than it really ought to do; but in truth, the Propertion is as 692 to 689. So that the Line CQ meafuring the Altitude of the Earth at the Equator, exceeds CP the Altitude at the Pole $8 \varsigma 200$ Paris Feet, or about 17 Miles.

This Affair is well worthy to be traced to it's Original, and to be backed by a Demonltration, fo tar asour Purpofe will permit. See tbe Hiftory of tbe Royal Academy of Sciences by du Hamel. Pag. $110,156,206$, Alfo Hif. de l'Acad. Ruy. 1700, 1701.

The Frenib made an Experiment about forty Years ago, fhewing thata Penduluin (which is a well known Inltrument for meafuring of Time) vibrates fo much the flower, by how much the nearer it is brought to the Equator: that is, the Gravity, of Celerity of Defcent of the Pendalum, and of all other Bo-
dies, is lefs in Countries approaching the Equator than in Places near either Pole. The two famous Philofophers Neroton and Huygens being excited by the Novelty of the Thing, and fearching more narrowly in: to the Caufe of it, found thereby that the Earth mult have fome other Figure than what was known; and alfo demonfrated that this Diminution of Weight doth naturally arife from the Rotation of the Earth round it's Axis ; which Rotation, according to the Laws of circular Motion, repels all heavy Bodies from the Axis of Motion: fo that this Motion being fwifter under the Equator than in Paris more remote, the Weight of Bodies mult alfo be much lefs there than nearer the Poles. Therefore the Parts of the \mathbf{O} cean under the Equator being made lighter, and according to the Nature of all Fluids, preffed and forced on either fide by the Waters nearer the Poles, they mult be raifed up to a greater Height, that fo they may better fupport and balance the greater Weight of the contiguous Waters. Which mutual Libration is demoniltrated upon Suppofition of that Inequality of the Diameters which we mentioned above. The Figure of the Sea being refembled by the Lands adjacent, which are every where raifed above the Sea, the aforefaid Form muft be attributed to the whole terraqueous Globe. They that would be more fully informed in this Matter may confult Newton's Principia Lib. iii. Prop. 19. or Huygen's Tredtife of the Caufe of Gravity. The

THE Arguments indeed which Authors offer to confirm the Truth of this, are handled fo obfcurely and confufedly, that they are almoft infufficient to convince the ftrenuous and obftinate Defenders of the contrary Opinion. We fhall therefore as much as is poffible, clear up and examine thefe Arguments ; that the Reader may have a diftinct KnowJedge of them, and know the better how to ufe them.

WE fhall not here take notice of fuch Reafons as are of lefs Weight, and at beft only probable, or perhaps fophitical. Such as, r. A fpherical Figure is the moft capacious; and therefore the Earth ought to have fuch a Figure. 2. All the Parts of the Earth tend to the fame Center; therefore all thefe

The fame Inequality of Diameter is alfo found in the Planet \mathcal{F} upiter, by the Obfervations of thofe Excellent Aftronomers Calini and Flamfead, and that much more than in our Earth; becaufe the diurnal Rotation of that Planet is more than twice as fwift as the Rotation of the Earth: which plainly proves, that the Difference arifes from no other Caufe than the circular Motion.

Furin's Appen dix.
Dr Derbam (in his PbyficoTbeol. B ii. C r. Note a) doth not feem to entertain any doubts concerning the terraqueous Globe, and the other Planets, being of a prolate fpheroidal Figure ; but he faith, That altho' he hath often viewed Jupiter, and other Planets, with very good Glaffes, which he hath of 72 feet, and the Royal Society's Glafs of above 120 feet, yet he never could perceive them to be otherwife than perfecly globu-
lar. And he thinks it next to impoffible, to take an exact meaSure of the Polar and Æquatoreal Diameters, by reafon of the Smallnefs of their apparent Diameters in a Micrometer, and theirMotion all the time of meafuring them.

And as to the Variation of the Vibrations of Pendulums, under the Line, and in the Northern and Southern Latitudes, he hath no doubt, but different Diftances from the Earth's Center, may caufe different Vibrations; but yet he fhews, from good Expe. riments he made with Pendulums in the Air-Pump, that thofe Alterations might, in fome meafure, be from the Rarity and Denfity of the Air, in the different Zones. And I may add to Dr Derbam's Experiments, the Lengthening of Iron Rods by Heat, and their Shortening by Cold; which I have found to be very confiderable, by very exact Experiments.

Parts ought to make up a globular Figure. 3. When at the firt Creation the Waters were confufedly mixed with the Earth, it was then without doubt moift and foft; but the Figure of all moitt and liquid Bodies is fpherical : and fo ought the Earth to remain after the feparation of the moit Parts from the dry.
I S A Y, neglecting thefe and fuch like Arguments, let us look out for better ; which are of three kinds. Of the firt there is only one deduced \grave{a} priori, as they call it : thofe of the other two kinds are demonftrated à poferiori ; or from Celeftial or Terreftrial Obfervations and Appearances.

THE firt Argument is taken from the Nature of Water, and borrowed either from Arijotle or Arcbimedes. Arifotle in his fecond Book de Callo, chap. 5th, propofes it as his own, after this manner, (tho' it is likely he borrowed it from fome Philofopher before him). If we take it for granted (fays he) that Water of it's own Nature tends always down to the moft concave or loweft Place; it will neceffarily follow, that the Superficies of the Water is round or fpherical ; but that Place is moft concave that is neareft the Center of the Earth, therefore let there be drawn from the Center α two right Lines $\alpha \beta$ and $\alpha \gamma$; and from β to γ the Line $\beta \gamma$; to which from a let fall the Perpendicular $\alpha \varepsilon$. (c) It is plain the Line ad (Fig. 5.) is lefs than $\alpha \beta$ or $\alpha \gamma$, and therefore the Place d is lower and more concave then β or 2 ; therefore the Water muft flow downwards from β and γ 'till the Lines $\alpha \beta, \alpha \gamma$, and ao are equal, that is, 'till ad becomes as equal to $\alpha \beta$, and $\alpha \gamma$; hence β, ε, and γ being in the Periphery of the fame Circle, muft make the true Superficies of the Water of a round Figure.
(c) Euclid. Lib. i. Prop. 18.

THIS is Arifotle's Demonftration, in which, befides the Incoherency of it, which might be eafily amended, I obferve thefe greater Errors. I. He fuppofeth the Univerfe to have a certain Center. 2. That Places are higher or lower in refpect to that Center. Now he who denies the fpherical Figure of the Earth, will perhaps grant neither of thefe Poftulata: Tho' the Univerfe may be eafily proved to have a Center, becaufe the apparent Motion of the fixed Stars obligeth us to fuppofe that they themfelves either revolve by a diurnal Motion, or that the Earth is turned about it's Center. If the Stars be really moved, then the Point about which they will revolve will certainly be the Center of the Univerfe. If the Earth; then the middle Point round which it moves, may, in the Demonftration, be taken for Arifotle's central Point. But the chief Difficulty is in the fecond Suppofition; viz. that Places are higher or lower in refpect of that Center ; becaufe he who will have the Superficies of the Earth to be a Plane, or fome other Figure, not round, will deny this Suppofition, and fay that Places appear higher or lower in refpect of the horizontal Plane, perpendicular to which the Earth is infinitely extended downwards ; or will perhaps explain the Declivity fome other way; fo that the Argument would not be conclufive except it were firft granted that the Elevation of one Place above another is only in refpect of fome Center, about which the Stars have their apparent Motion. And tho' this were true, and all other Notions of Declivity by which Water is depreffed were confuted, yet it could fcarcely be admitted for a Principle, becaufe it precariouny fuppofes the Earth to be of a fpheric Figure, which is begging the Queftion.

THEREFORE fome prefer Arcbimedes's Demonftration (found in the firft Book of bis De Insidentibus Humido) which is indeed more artificial than

Снар. 3. of Univerfal Geography. that of Arifotle; yet labours under the fame Diffculties, in previoully fuppofing the Earth to be of a fpheric Figure, to whofe Center the preffure of the Water is made. But we are far from fuppofing that the divine Arcbimedes could be guilty of any falfe Reafoning! No, his Defign in that Book was not to demonftrate the fpherical Figure of the Earth (for then he had indeed begged the Queftion) but only to explain the Nature of Water and other Liquids; in order to which he pre-fuppofes the Earth to be of a fpherical Figure, or to have a Center, to which all heavy Bodies in general tend; and this he takes as a Principle before known and demonftrated from other Phænomena: So that I wonder Clavius did not obferve this, who, in his Commentary upon Foannes de Sacro Bofco, ufes this Demonftration of Arcbimedes for the fpheric Figure of the Earth: Snellius alfo does the fame in his Eratofthenes Batavus. But it was Arifotle's Defign in the Place before cited to demonitrate the fpheric Figure of the Earth, Sea, and Heavens; wherefore he could not affume a Center to the Univerfe, or Earth, without being guilty of a manifett Paralogi $/ m$.

S O that this Argument taken from the Nature of Water, tho' it be propofed by almoft all Authors, yet labours under fome Difficulties, which more learned Mathematicians have endeavoured to remove, if poffible. I have myfelf fpent fome Time upon this Matter, and tryed feveral Methods, but could not bring them to bear. I was induced to attempt the Thing, becaufe it would be an elegant and unqueftionable Demonftration of the fpherical Figure of the Earth.

THEREFORE waving this; we fhall now propofe fome Arguments à pofteriori, taken firft from celeftial Phænomena. Let us conceive a Sec-tion made by a plane or a meridian Line (which is called the Line of Latitude) to pafs thro' a Place B,

V OL. I.
D
or any other Part of the Earth, and alfo thro' the two 'Poles M, N; as A BC D. And fuppore another Section (or Line of Longitude) (Fig-3.) to pais thro* the fame Point B, perpendicular to the former, and parallel to the Equator; as EBFC. I fay thefe two Sections or Lines on the Surface of the Earth may be proved to be circular. And it is a plain geometrical Tbeorem, that any Superficies whatever, when it is cut with perpendicular Planes, interfecting each other in one common Line or Axis, if the Lines produced on the Surface be circular, the Body can be no other than fpherical.

THEREFORE if we can prove, that the two perpendicular Sections are circular, which pafs. thro' any Point, B , taken at Pleafure; we may alfo by the aforefaid Tbeorem conclude the Superficies. of the Earth to be of a fpherical Figure, and the Earth itfelf a globular Body.

N OW it is proved from divers celeftial Phænomena. that a Section made from one Pole to another, according to the Latitude of the Earth, is circular. 1. If in the Line ABCD, a Perfon gofrom any Point, as B, towards either Pole, as M, or the Star near it ; he will find that by equal Journies he will equally approach nearer the Pole; which. would be impoffible if the Line he travelled in was. not circular; as is plainly fhewed by the artificial terreftrial Globe. 2. The Line A B CD is the meridian Line, into which when the Sun comes it is Noon or Mid-Day with us; and all the People who inhabit that Line, as we know by Experience ; and. they that fail in the Torrid Zone teftify, that the Sun at fome Time of the Year is perpendicular to fome Place in the Line A BC ; for Example, to P. If we take equal Spaces B Q, P Q (or any other) we fhall find the Diftance of the Sun from the Zenith of Q, equal to the Interval, by which the Diftance of the Sun from the Zenith of B exceeds the Diftance
of the fame from that of Q ; which could by no means happen if the Line BPQ was not circular. 3. In like manner all the Stars when they come to the Meridian A B C, have their Diftances from the Zeniths of $\mathrm{P}, \mathrm{Q}, \mathrm{B}$, in the fame Proportion as the Diftances QP, PB, Q B. Moreover when our Mariners fail towards the South, the Stars which before were depreffed under the Horizon, and could not be feen, begin to appear, and by degrees are elevated in proportion to their Courfe. 4. If feveral Places be obierved in the fame Meridian, and the Stars that pafs thro' their Zeniths be noted; the Diftances of thefe Places have the fame Proportion one to another, as the Diftances of the meridional Points, wherein the feveral vertical Stars make their fouthing.

ALSO to prove that the Line of Longitude EBFC is circular, and that the Earth rifes into a globular Figure, according to that other Dimenfion, we need but obferve that the Sun and Stars rife and fet fooner to thofe that inhabit eaftward of us, but later to them that are more to the weft; and alfo that the Difference of Time is in proportion to the Diftances of their Meridians from ours. Thus, if we fuppofe two Places directly Eaft, the one diftant from us 225 Miles, the other 450 , twice as much; we fhall find that in this laft Place the Sun rifeth two Hours fooner, and in the other one Hour fooner than with us. The Argument will be more clear, if it be propofed about the Sun's approaching the Meridians of divers Places; for their Diftances in refpect of ours are in Proportion to the Time of the Sun's apparent Motion (or an Arch of the Equator intercepted between our Meridian and theirs) as is evident in Eclipfes. Thefe Facts agree precifely to the Demonftrations upon the Artificial Globe: which could not happen if the Earth had any other Figure. Form, both in Longitude and Latitud..

BUT fince there feems to be a Difficulty in handling the Longitude, all this may be proved by the Latitude only. For it is manifeft, that the Figure of the Earth is fpherical, fince all the Sections, or Lines of Latitude, are circular; and pafs thro' the fame Point or Pole. Becaufe any folid Body whatfoever being cut with innumerable Planes, all pafing thro' the fame Point; if the Peripheries of thefe Sections are circular, the Body itfelf muft be fpherical: as is known and allowed by all Geometricians.

THERE is another Reafon of no lefs Force, taken from the Sbadow of the Eartb upon the Face of the Moon in Lunar Eclipes. For fince the obfcured Part of the Moon, caufed by the conical Sbadow of the Earth, feems always to be bounded with a circular Line; the Earth itfelf, for that Reafon, muft needs be fpherical (d). Becaufe it is manifeft from Optics that a folid Body being every way oppofed to the Sun; if the Shadow be always conical, the Body itfelf is fpherical.

IF thefe Arguments are not fufficient, we might produce a great many more, from the confideration of the Earth itfelf, which perfectly prove the Earth's Rotundity : fuch as thefe;

Abstract

(d) Tacquet (in bis Aftronomy Lib. iv.) hath demonftrated that the Shadow of the Earth never reaches fo far as the Moon ; fo that the Moon is darkened not by the Shadow of the Earth, but by that of it's Atmofphere only; which was obferved, tho not fo exactly demonflrated, by Kepler and Ricciolus. But whether the Sha:

dow proceed from the Earth itfelf, or the Atmo/pbere, (tho* the latter indeed be the Truth) the Thing is the fame in the prefent Cafe: for if the Shadow of the Atmofpbere be circular, the Shadow of the Earth which is enclofed on every Side therebymult be circular too. Wbifon's Aftron. Lect. Pag. 2

1. FROM Circumnavigation ; for the Europeans have feveral times fet Sail from Europe, and fteer'd their Courfe directly South and Weft, 'till they came to the Magellanic Sea; and from thence to the North and Weft 'till they returned to Europe from the Eaft ; and all the Phænomena, which fhould naturally arife from the Earth's Rotundity, happened to them. Their Method of failing alfo was founded upon this Hypothefis; which could never have fucceeded fo happily if the Earth had been of any other Figure *.
2. WHEN we take our Departure from high Mountains and Towers; firtt the lower Parts, then thofe that are higher, and laftly, their Tops are by degrees depreffed, as it were, and hid from us: On the other Hand, when we approach towards them, from a Place at a great Diftance, firft the Top appears, then the middle Part, and laftly, when we come pretty near, the very Foot of the Mountain is difcovered. So that this gradual Appearance and Occultation, is fuch as muft neceffarily happen from the fpherical Figure of the the Earth.
3. IF we meafure the Altitude of any Mountain upon this Suppofition, that the Earth is globular ; the Practice is always found to juftify the Truth of the Theory.

W E might demonftrate many of thefe Arguments geometrically ; but (becaufe it would be both

[^2] circular, from fuch Principles, $\Xi^{3} c$.) we fhall content ourfelves with thofe evident Proofs above delivered: which being collected into one Sum, will fufficiently demonftrate the Earth to be globular. As, firft, the celeftial Phænomena (viz. The diffetent Elevation of the Pole; the unequal Altitude of the Sun, at the farme Inftant, in different Countries; the Earth's Shadow on the Moon.; the vaft Increafe of the longeft Day towards the Poles; the Rifing and Setting of the Stars; their perpetual Appearance near the Pole, \mathcal{E}°.) do all equally prove the Earth's Rotundity. Alfo the terreftrial Appearances (viz. The Art of Navigation; the Appearance and Occultation of Mountains and Towers; the Diftances of Places; the Winds and Points of the Compafs, $\mho^{3} c$.) can only be accounted for by this Figure and no other. Allo the artificial Globe, which we make to reprefent the Earth, exhibits all thefe Things as they really are on the Earth ; which would certainly, in fome Cafes, be different, except this was it's true Reprefentation. The Earth is not of a plane Figure, as is manifeft from the aforefaid Arguments; nor of a hollow Figure; for then the Sun and Stars would appear fooner to the weftern Inhabitants than to thofe of the Eaft: But we fee the Rifing Sun every Day illuminates the Vallies, before it fhines upon the back Parts of the oppofite Mountains *.

[^3]
Снат. 3. of Univerfal Geografby.

 39A fipherical Body alfo is the only one that is fimilar, or hath all it's Parts alike among themfelves; fo that they may be mutually applied one to another. For if two equal Parts of a Sphere be confidered, the Properties of each are the fame; which will not holed in any other Body. Thus in meafuring the Earth in different Places; if it be performed by the fame Method, it is always found of the fame Magnitude: which doth not a little contribute to the Proof of thefe Affertions.

A N Y impartial Perfon may eafily perceive of how little Weight their Reafons are, who believe the Earth to be of a plane Figure. For which they argue, 1. Becaufe on a clear Day the Earth feems to be plane, as well as the Sea, if we look every way round about us (e). 2. If the Surface of it was not plane, it would be more eafily moved, and more fubject to fall to pieces; whereas flat Figures are more firm and ftable (f) - 3. The Rifing or Setting Sun and Moon are cut, as it were, with right Lines; but if the Earth was fpherical, they ought to be divided by circular ones. Thus the Ancients reafoned, ridiculoufly, as Arifotle tells us. 4. Some argue that the many high Mountains muft, of neceffity, deface it's Rotundity. 5. Others believe the Sea to be higher than the Earth. 6. Some again think it impoffible that Men fhould ftand upon the oppofite
(e) This Argument is confused by what is faid above, about the Appearance and Difappearance of Mountains.
(f) A Spherical Body is not fo liable to decay and fracture as another, becaufe all the Parts of the Surface are equidiftant from the Center. And we are taught by Sir Ifaac Newton's Principles, that the Divine Being at the Creation, bettowed the

Power of Attraction upon all the Matter in the Univerfe, whereby all Bodies, and all the Parts of Bodics, mutually attract themfelves and one another; which, as, the Rev. Dr Derbam obferves, is the natural Caule of the Sphericity of our common Globe. See Newton's Principia, Lib. 3. Prop. 7. Alio Derbam's Pbyjico.Theol. p. 40.

Part

Part of the Earth to us; and not fall headlong into the Sky. This laft has created a Scruple not only with the Vulgar, but even with fome Men of Letters; which I could fcarce have believed, had I not heard them confefs, that tho' they could not deny the Spherical Figure of the Eartb for many urgent Reafons; yet they could not remove this one Objection out of their Minds; not to mention the Taunts and Scoffs of St Aurufine, and other Fathers upon this Subject. Thefe and fuch like Reafons are foon confuted by any one: and that the higheft Mountains have farce any Proportion to the Semidiameter of the Earth, we fhall afterwards demonftrate (g).

THEREFORE, fince the fpherical Figure of the Earth is plainly proved and demonftrated, we ought to make ourfelves acquainted with thofe Definitions and Properties which are applied to, and found in the Spbere, or Globe, by Geometricians, and accommodate them to the Earth; as the Center, the Diameter, the Axis and Poles, the greater and leffer Circles of the Sphere, Ėc. (b).

W H O

(g) The higheft Mountains are fo inconfiderable to the Se midiameter of the Earth; that they alter the Figure of it no more than Duft upon the Surface of our common Globes, as is proved below, Cb. 9. Prop. 7 .
(b) Tacquet (Lib. 1. Cbap. $\mathbf{2}$. of bis Afronomy) has drawn fome very neat Coonfequences from the roundnefs of the Earth; which we fhall here tranfcribe from Dr Clarke's Notes upon Rohault's Pbyfics. Vol. ii. Pag. 5.

1. If any Part of the Earth's Superficies were plane, Men could no more fland upright upon it, than upon the fide of d mountain.
2. Becaufe the Superficies of the Earth is globular, the Head of a Traveller goes a longer Journey than his Feet: and he who rides on Horfeback, goes a longer Journey than he who walks the fame Way on Foot. So, likewife, the upper Part of the Maft of a Ship goes more Way than the lower ; viz. Because they move in Part of a larger Circle.
3. If a Man goes the whole Circumference of the Earth's Orb; the Journey which his Head travels exceeds that of his Feet, by the Circumference of a Circle whofe Radius is the Man's height.

Cнар. 4. of Univerfal Geography.
WHO it was that firft found out the Earth's fpherical Figure, lies hid in the dark Ruins of Antiquity. Certainly the Opinion is very ancient (i); for when Babylon was taken by Alexander, Eclipfes were there found calculated and foretold, for many Years before Chrift: which could not be done without the Knowledge of the Eartb's Figure. Nor can Thale's the Grecian be thought to have been ignorant of it, by his foretelling an Eclipfe.

C H A P. IV.

Of the Menfuration and Magnitude of the Eartb.

THE Menfüration of the Earth is founded upon the Solution of thefe three Problems. I. To meafure the Diameter or Semidiameter, and alfo the Circuit or Periphery. 2. To find the Area

or

4. If a Veffel full of Water be raifed perpendicularly, fome of the Water would continually run over, and yet the Veffel would be always full. viz. Becaufe the Superficies of the Water is continually depreffed into Part of a larger Spbere.
5. If a Veffel full of Water were carried directly downwards tho' none of it run over, yet the Veffel would not be full, viz. Becaufe the Superficies of the Water is continually raijed into Part of a lefs Spbere.
6. Whence it follows, that the fame Veffel will hold more

Water at the Foot of a Mountain than at the Top; and more in a Cellar than in a Chamber.

To which may be added, laftly, that two Threads upon which two Steel Balls hang perpendicularly (or two Walls of a Hiufe raifed by a Plumb Line) are not parallel to each other, but Parts of two Radius's which meet at the Center of the Earth.
(i) Ptolemy, in bis Almageft; tells the Times of three Lunar Eclipfes, obferved by the Babylonian Aftronomers. The firt on the $19^{\text {th }}$ of March 721 Years before Chrit: The next Solidity, Mafs, or Magnitude. Thefe have fuch a Relation among themfelves, that one being known the reft are obtained by Geometrical Propofitions, fuppofing the Earth a Sphere; as is hhewn in Chap. 2.

T H IS Propofition has been efteemed fo advantageous and ufeful, that it hath employed and exercifed the greateft Genius's for many Ages: fo that whole Volumes have been writ only upon this Subject. Wherefore I thought it would not unacceptable to the Students in Geography, to give a fhort Hiftory of the Menfuration of the Earth.

DIOGENES Laërtius highly commends $A-$ saximander, a Difciple of Thales, for that, befide other Aftronomical Inventions, he firft difcovered the Perimeter or Circuit of the terraqueous Globe. This Anaximander lived about 550 Years before the Birth of our Saviour: and Authors mention no other Meafure but his, to be ufed by the Mathematicians of fucceeding Ages, even 'till the Time of Eratofthenes: fo that it is (very likely) his Meafure, which Arifotle mentions in the end of his fecond Book De Calo. " Mathematicians, fays he, who " have attempted to meafure the Earth. fay it is " 400,000 Furlongs round." Hence we have the Dimenfions of the Earth according to Anaximander. But befides this one Teftimony of Diogenes Laërtius, we are entirely in the dark by what Invention, Ar-
on the $8^{\text {th }}$ of March 720 Years before Chrift; and the third on September 1, 710 Years before the fame ,Era. And He_{e} rodotus (in bis Hifory, Lib. I. Sect.74. Pag. 30.) fays, "That " after the War bad been car"ried un $f x$ years between the "Medes and Lydians; as they "suers going to battle, the

[^4]Снар. 4. of Univerfal Geography.
tifice, or Method, Anaximander found out this Meafure. Therefore Eratofthenes (who attempted it next after him, and lived about 200 Years before Chritt; being perfectly fkilled in Menfuration, and other Parts of Mathematics) is juftly celebrated and efteemed by all, as the firt and moft accurate Meafurer of the Earth. He difcovered the Perimeter of it to be about 250000 Furlongs; or, as others fay, 252.000 ; which are, as Pliny tells us, 31.500 .000 Roman Paces, equal to 3 1. 500 Miles of 1000 Paces each.
$S T R A B O$ relates the Contents of three Books of Geography that had been writ by Eratoftbenes, which are now loft, thro' the Injury of Time. Cleomedes alfo mentions the Method he ufed in meafuring the Earth; which we fhall explain afterwards. However, this Meafure of Eratofthenes was judged by feveral Mathematicians (and firt by Hipparchuis about 100 Years after) to deviate fomething from the Truth: tho' Hipparcbus himfelf has not left us his Method of Menfuration; but only added 25.000 Furlongs to Eratoftbenes's Perimeter. After him Pofidonius (an excellent practical Aftronomer, and alfo well fkilled in Philofophy s a little before Chrift, in the Time of Cicero and Pompey) fet about it, and found, by his Menfuration, the Circumference of the Earth to be 240.000 Furlongs, as Cleomedes tells us. But Strabo differs from him, and fays it was 180.000 : whence there arofe great Doubts and Difputes about the Caufe of this Difference. It 's true, Strabo's Method is delivered in few Words, and is in Fact much nearer the Truth than the other: but becaufe Cleomedes both read and taught Pofidonius's Geography, we fhall explain his Method hereafter.
NEVERTHELESS, the Dimenfions of Eratofftenes were made ufe of by many; even 'till the Time of Ptolemy. And he, in the year of Chritt 144, ufed 180,000 Furlongs as the Perimeter, and affirmed
affirmed it to be moft agreeable to the Truth; infomuch that this Invention was, by Tbeon, afcribed to him. We gather alfo from the Writings of Ptolemy, that Marinus, a famous Geographer, by whofe Writings he himfelf was very much inftructed, had attempted fomething in this Matter.

PTOLEMT (in Lib. i. Cbap. 3, of his Geograpby) tells us, that he alfo had tried this Method, not the fame Way with his Predeceffors; but in Places of different Meridians: tho' he does not tell us how much he found the Perimeter to be, but contents himfelf with the Meafure he had received from Marinus and his Predeceffors, viz. 180.000 Furlongs.

AFTERWARDS, when the Cultivation of Arts by degrees difappeared in Greece, nothing was done in this Bufinefs; neither did the Romans trouble themfelves about it.

B UT the Arabs and Saracens having wrefted the Glory of Empire and Arts out of the Hands of the Grecians, did not neglect this Part of Mathematics. For (as Snellius tells us from Abulfeda, an Arabian Geographer, who flourifhed about the Year of Chrift 1300, and whofe Writings were publifhed at Rome) about the 800 Year of the Chriftian Era, Maimon King of Arabia, or Calif of Baby3on, being a great Student in Mathematics, commanded Ptolemy's Great Confruction to be tranflated from the Greek into Arabic, which is, by the Arabians, called Ptolemy's Almagef. This Maimon having fummoned together feveral learned Mathematicians commanded them to fearch into the Earth's Perimeter. For performing of which they made ufe of the Planes of Zinjan or Mefopotamia; and mea--furing from North to South under the fame Meridian 'till they had decreafed the Elevation of the Pole one Degr. they found the length of their Journey to be 5^{6} Miles, or $5^{6 \frac{1}{2}}$; from whence we find the Perimeter

Perimeter of the Earth to be 20.160 Miles, or 20. 340, according to that Meafure.

FR OM that Time to this none were folicitous about folving the Problem. The Arabs commonly ufing the Dimenfions they had received from their Mathematicians; and the Italians, when they began to ftudy Aftronomy; made ufe of Ptolemy's Meafure, viz. 180.000 Furlongs (which make 21.600 Italian Miles, or 5.400 German; fo that 60 of the former, and 15 of the later was thought to make a Degree: but they ought to have reckoned $15 \frac{\frac{1}{3}}{6}$ of the latter, becaufe 32 Furlongs nearly equal a German Mile; thus the Periphery woald be 5625 . Germ. Miles). But about 80 Years ago Snellius, a famous Mathematician, and Profeffor at Leyden, obferving that the Perimeter of the Earth, commonly made ufe of by Mathematicians (or the length of a Degree, vulgarly fuppofed 15 Dutcb Miles), was queftionable, and founded upon no certain Demonitration; he thereupon applied himfelf with great Induftry to it's Menfuration, and happily finifhed it ; demonftrating the Magnitude of one Degree of the Earth's Periphery to be 28.500 Perches (each containing 12 Rbinland Feet) or 19 Holland Miles; and the whole Periphery to equal 6.840 Miles (reckoning 1.500 Perches, or 18.000 Rbinland Feet, to a Mile).
W E thought fit to premife this fhort Hiftory of the Earth's Menfuration, that the Reader may perceive by what Induftry it hath been managed, and with what Difficulty effected. Now we fhall treat of the different Methods of Menfuration, all founded upon the Difcovery of the Earth's $/$ pherical Fizure, which we have proved in the preceding Chapter. Therefore, confidering it globular, if it be cut by a Plane paffing thro' the Center, the Section will be a great Circle of the Earth : if not thro' the Center, then the Section will be one of the leffer Circles. Alfo the Periphery of a great Circle upon the Surface of the Earth,

Earth, is it's Circuit or Meafure round. Note, This Periphery is divided (as all others are) into 360 Degr. and becaufe the Extent of the whole cannot be meafured at once, we folve the Problem by finding the Length of a Part (viz. of I Degr. $\frac{1}{2}$ Degr. Evc.) in known Meafures; which Neceffity often occurs in other Problems. We alfo frequently take the Periphery of the Earth to be a Meridian paffing thro' the Place of Obfervation, and the North or Pole-Star ; which is more eafy, and lefs fubject to Error.

The firft Metbod; ufed by the Arabians and otbers for meafuring the Earth.

LE Tour Horizon be $b \mathrm{HRSs}$; then the Perimeter of the Terreftrial Meridian (which lies under, and is concentrical to, that in the Heavens $a b c d$) will be ABCD, (Fig. 6.) and R will be the Center of the Earth. Suppofe our Place of Obfervation at B, whofe Zenith is b, and the Terreftrial Pole A lying under that in the Heavens a; then the Elevation of the Pole above our Horizon will be A H, or $a b$. Let us take another Place in the fame Me ridian ABCD under $a b c d$, as G, whore Zenith is g, and Horizon f FR T t. Now fuppofe the Elevation of the Pole to be accurately obferved in the Place B, viz. ab or A H; and alfo in the Place G, viz. $f a$ or FA. Take F A from HA and the Remainder is HF, equal to $B G$, the Arch intercepted between the two Places. Laftly the Diftance B G equal to the Arch $b g$, is to be accurately meafured by fome known Meafure, as a Perch or a Mile. Then by the Golden Rule fay, as B G isto A B G CD, 360 Degr. fo is the known Interval in Miles or Perches, to the Miles or Perches contained in the Periphery ABGCD: or as the Arch BG is to 1 Degr. fo are the Miles in the Diftance BG, to the Miles or Perches in a Degree.
$N O T E$, If you take the vulgar Computation of the Diftance B G, without meafuring it, then the Quantity of the Degree will be determined accordingly; as I Degr. will equal 15 fuch Miles, as B G equals 10, छ'c.

Example, Let B be Amferdam, where the Elevation of the Pole A H or $a b$ is 52 degr. 23 min . and let G be Schoonboven, lying under the fame Meridian with Amflerdam, where the Elevation of the Pole AF or af is 51 degr. 54 min. therefore FH or BG will be 29 min . but the Diftance between Amferdam and Scboonboven is $9^{\frac{1}{+}}$ Dutcb Miles, or 13875 Rbinland Perches, 12 Foot each; therefore, 2s 29 min . is to 60 min . or I degr. fo is $9^{\frac{1}{4}}$ Miles to 19 Dutch Miles: therefore 19 Dutch Miles equal 1 degr. and 6.840 make 360 , or the whole Periphery.

OR if the Diftance B G be fuppofed $7^{\frac{1}{4}}$ German Miles (eachequal to 1900 Rbinland Perches) it will be as 29 min . is to 60 min . fo is $7 \frac{1}{4}$ to 15 of the fame German Miles, for a Degr. of which 5.400 make the whole Circumference. Thus the Elevation of the Pole at Prague is 50 degr. 6 min . and at Lincium 48 degr. 16 min . the Difference BG is $\mathbf{1}$ degr. 50 min . and the Diftance is computed to be 26 German Miles; from whence the Periphery will be 5.105 Miles.

The fecond Metbod, tbat of Eratofthenes.
A GAIN, let there be two Places under the fame Meridian ; the one B_{2} Alexandria in Egypt, where Eratoftbenes, Keeper of the King's Library, lived; the other G, (Fig-6.) the Town of Syene, a City in Egypt, under the Tropic of Cancer, and, for that Reafon, chofen by Eratofibenes, whofe Diftance from Alexandria was computed 5000 Furlongs. Let the Diftance of the Sun, at Noon, from the Zeniths, g and b, of both Places be obferved by Obfervation (or 7 degr. 12 min.) but at Syene the Sun hath no Diftance from the Zenith at Noon, it being exactly vertical that Day. So that the Arch of the Diftance B G, intercepted between the two Places is 7 degr. 12 min . but the Diftance itfelf is accounted 5.000 Furlongs (8 of which make an Italian Mile). Therefore by the Golden Rule, as 7 degr. 12 min . is to $1 \operatorname{degr}$. (or as $\frac{1}{5}$ to $3 \frac{1}{60}$, or as 36 to 5) fo is 5000 to $694 \frac{4}{9}$ Furlongs in I degr. Or as $\frac{1}{50}$ is to I , (or as 1 to 50) fo is 5000 to 25000 Furlongs, the whole Periphery, according to this Meafure. There are divers ways of taking the Meridian Altitude of the Sun, or it's Diftance from the Vertex ; as by a Quadrant, \mathcal{E}^{2}. Eratoftbenes found it by a hollow hemifpherical Dial; where the Style BX (Fig. 7.) points to the Zenith, and $O X Z$ is a Ray of the Sun terminating the Shadow of the Style, and fhews the Arch BZ equal to OB 7 degr. 12 min . the Diftance of the Sun from the Zenith. But at Syene the Style hath no Shadow ; nor hath the Sun any Diftance from the Zenith; being perpendicular to the Plane of the Place. Therefore fince B X Z (Fig. 6, 7.) is equal to the Angle $b \mathrm{X} \mathrm{O}$, (whofe Meafure is B G or $b \mathrm{O}$) BG is equal to $\mathrm{BZ} 7 \operatorname{deg} r$. 12 min . or so Part of the Periphery, as before.

The third Metbod, that of Pofidonius.
POSIDONIUS took two Places under the fame Meridian; viz. B, Rbodes, the Place where he lived, and G, Alexandria in Egypt; and obferved the Altitude of the Star S (Fig. 6.) (a bright Star in the Ship Argo called Canopus) when it came to the Meridian of both Places, on the fame,

Снар. 4. of Univerfal Geography. or which is all one, on different Days. This Star did not rife above the Horizon $b \mathrm{H}$ s at Rbodes, but only glanced upon it at S : tho' it was elevated above the Horizon of Alexandria F R T, the Arch ts $\frac{1}{48}$ Part of the Periphery or 7 degr .30 min . He tells us the Diftance betwixt Alexandria and Rbodes is 5.000 Furlongs. Therefore, as 7 degr .30 min . is to 1 degr. (or as $\frac{1}{48}$ to $\frac{1}{360}$, i.e. as 360 to 48) fo is 5.000 to $666 \frac{2}{3}$ Furlongs in 1 degr. or as $1: 48:$: 5.000 : 24.000 Furlongs, for the whole Periphery of the Earth, according to Pofidonius.

The fourtb Metbod, that of Snellius.

I N the Methods above delivered we have conftantly fuppofed the two Places to lie under the fame Meridian; but becaufe Places may lie plain-s er, and more commodious for this Purpofe under different Meridians, we fhall propofe an Example in this Cafe which is that of Snellius.

LET therefore ABCD (Fig. 6.) be the Meridian of Alcmair, and B, Alcmair itfelf; where the Elevation of the Pole $b a$ is 52 degr. $40 \frac{1}{2}$ min. and the Polar Diftance B A 37 degr. $19^{\frac{1}{2}}$ min. 30 Sec.

LET the other Place P be Bergen-op-zoom, whofe Meridian is A P C, and ir's Diftance from the Pole, or Complement of Latitude (viz. to 51 degr. 29 min.) is AP 38 degr. 31 min . therefore, having drawn PG perpendicular to ABG, the Difference of their Diftances from the Pole is BG. degr. 11 min. 30 Jec.

A FTER Snellius had taken thefe Obfervations, he accurately meafured the Diftaifce BP, between Alcmair and Bergen, and found it to be 34710 Rbinland Perches; and the Angle of Pofition P:B G I I degr. 26 min .2 fec. therefore in the rightangled Triangle PBG, the Hypotenufe P B and YOL.I'
the Angle PBG being given, the Side BG is found to be 34018 Perches (which Snellius makes only 33930, for he abated 88 Perches on Account of the Stations where the Elevation of the Pole was obferved). But the Arch B G, as was faid before, is $71^{\frac{1}{2}} \mathrm{~min}$. therefore as $71^{\frac{1}{2}}$ is to 1 degr. or 60 min . 10 is 33930 (or 34018) to 28473 Perches; or the round Number 28500 for 1 degr. equal to 19 Dutch. Miles. Or by fpherical Trigonometry; having A B, A P, and the Angle ABPgiven, find the Arch BP 1 degr. 14 min . which equals 34710 Perches ; therefore I degr. will be 28300 Perches, or $18 \frac{4}{3}$ Miles. The Reafon why this Account differs from that of Snellius is; I. He did not obferve the Elevation of the Pole from the very Tops of the Towers B and P themfelves, from whence the Angle GBP was taken, but from fome Eminence or rifing Ground a little remote from them: yet with2 out Doubt the Altitudes of the Pole were the fame on the Tops of the Towers. 2. Another Reafon is, he took B G, B P, P G for right Lines, which are indeed circular; tho', in fo fmall an Arch? the Difference is of little or no Moment. Therefore, granting Snellius's Meafure of a Degree to be 28500 Perches, equal to $18 \frac{14^{\circ}}{50}$ Miles, (and mine 28300 making 18 $8^{\frac{1}{2}}$ the Perimeter of the Earth will be, according to Snellius, 10.260 .000 Per ches, or 123.120 .000 Feet, that is $6: 840$ Holland Miles (a).
(a) The Meafure of the Eartb which Snelfius with greit Induftry difcovered, hath been defervedly embrâcéd by the Learned; as being much hore accurate than any of the fotmer. Neverthelef́an in a Mattor of fuch Moment, and which is involved with to many ${ }^{2}$ Dif-
ficulties, the curious have not thoughe it fafe to confide in any one, tho' the moft skillful, Mathematician ; which we fee confirmed by Cadini the Son of the fanlous Aftronomer of that Names For he having cald culated the Numbers arifing. from Snelliuis's Oblervation, atfigned

The fifth, but firf Terreftrial, Method.

HOW to perform the Work without Celeftial Obfervations, or a Meridian Line, is explained in

figned a much greater Meafure to the Earth than Sinelius; and alfo difcovered fome Er rors in his Calculation, which spoiled the whole Proce's of his Work. See Hif. Acad. Scien. 1702. Add to this, that the Latitude and Angle of Pofition of Places can now be taken more accurately by Telefcopes, which are begun, fome Years ago, to be fitted to Altronamical and Surveying Inftruments, inftead of bare little Pins, which Snellius used. Tho' feveral others had fet about this Work; yet fome French Mathematicians, Fellows of the Royal Academy of Sciences, did molt fucceiffully perform it: whofe Menfuration far exceeds all others, both in the Number and Accuracy of their Obfervations, and alfo in the Furniture of moft exquifite Infruments. Wherefore we efleem it well worth the while, to give the whole Method of Operation in fhort.

The Points in the Figure which are marked with Roman Letters, fhew the Places chofen for Obfervation; whofe Bearing, or Situation, in refpect of the Royal Obfervatory at Paris, is feen in a Geographical Map. (See Fig: 8)

By the fame Method of Menfuration which Snellius ufed,
they propofed to find the Diftance between the Parallels of the Places N and E , or the Line N ot in Fathoms; fo that this Diftance being known, and the Latitude of each Place N and E, or the Difference of Latitude; that is an Arch of the Meridian intercepted between the two Parallels, being found, it will appear how many Fathoms make any determined Arch of a great Circle of the Earth, fuch as the Meridian is: from whence it will be eafily found how many Fathoms equal a Degree, or the whole Periphery of the Earth. Afierwards it was thought fit to meafure the Line N β, the Diftance between the Parallels of the Places N and Q; fo that the Latitude at Q being allo oblerved, there might be had an Arch of the Meridian equal to the whole Dilfance β a. For by this Means, they could more accurately determine the Meafure of the Earth's Periphery, when they had found it the fame by two Operations. Thefe Lines they meafured by a continued Series of Triangles drawn from the Line AB; for it being directly plane and firaight, they had the Advantage of meafuring it with Iron Rods as accurately as could
be, and found it to be 5663 Fathoms.
The Latitudes of the Places were taken by an Inftrument, whole Radius was 10 Paris Feet; and the Angles of each Triangle by a Quadrant of a Circle whole Semidiameter was ${ }^{\frac{1}{6}}$ Feet; both which Inframints were accurately divided by Diagonal Lines.

In the frt Triangle A BC: There are known by Obfervation The $\left\{\begin{array}{lllll}\text { C A B } & 54^{\circ} & 04^{\circ} . & 35^{\prime \prime} . \\ \text { AB C } & 0 . & 06 & 55^{\prime} .\end{array}\right.$ Any. $\left\{\begin{array}{llll}A B C & 95 & 06 . & 55 . \\ A C B & 30 . & 48 . & 30 .\end{array}\right.$ Found by Fath. Fe. meafuring -- A B-5663. 00. Hence by Calculasion is found the
Side .- A C .- 11012.05 .
In the fecond Triangle ADC. D AC $77^{\circ} \cdot 25^{\prime} \cdot 50^{\prime \prime}$ ADC 55.00. 00. ACD 47. 34. 00. Fath. Fe. AC 11012 . 5. Hence DC 13121.3.
In the third Triangle DEC. DEC $74^{\circ} .09^{\prime} 30^{\prime \prime}$. DCE 40. 3400. CDE 65. 16. 30. Fath. Fe.
DC 13121.03.
Hence DE 8870. 03.
In the fourth Triangle DCF.
DEF 113.47 .40.
DFC 33. 40.00.
FDC 32. 32. 20. Fath. Fe. DC 13121. 03. Hence DF 21658 . co.

In the fifth Triangle DFG. DF G 92. 05.20° DGF 57. 34. 00. GDF 30. 20. 40. Fath. Fe.
DF-21658. oo. Hence DG 25643. oo. And FG 12963.03.

In the fixth Triangle G DE: GDE 28. 09. 30. Fath. Fe.
DG 25643 . 00.
DE 8874.03.
Hence GE 31897. 00,
When they had found the Line GE, by another Series of Triangles, to be 31893 Fath. 3 Feet, they divided the Difference which made up the lefter Meafure 31895 Fath.

In the feventh Triangle HF G. HFG 36. 50.00 . HGF 104. 48. 30 ; Fath. Fe .
FE 12963.03. Hence HG 12523.00.

In the eighth Triangle HGI. H GI 31. 50. 30. HIG 43. 29. 30 . Fath. Fe .
HG 12523.00. Hence GI r7562. 00. And HI 9570. 00?

In the ninth Triangle HIK,
HIK 49. 20. 30.
HKI 53. 06. 40. Fath. Fe.
HI 9570.00.
Hence IK 11683.00 .
In the tenth Triangle IK L. LIK 58. 31. 30. IKL 58. 3I. 00. Fath.

Fatb. Fe. forefaid Lines might be verified,

IK 11683. 00. Hence KL 11 188. 02. And IL 11186. 04.

In the eleventh Triangle KLM. LK M 28. 52. 30. KML 63. 31. oo. Fatb. Fe.
KL ${ }_{11188 .} 02$. Hence LM 6036. o2.

If the Sum of the three Angles ILK, KLM, MLN. be taken from 360 Degrees, there will remain the Angle ILN 119 degr. 32 min. 40 jec.

In the $1^{\text {th }}$ Triangle LMN. LMN 60. 38. 0. MN L 29. 28. 20. Fatb. Fe.
LM 6036. 02. Hence LN 10690. 00.

In the $1^{\text {th }}$ Triangle ILN. ILN 32. 40. Fatb. Fe . LN 10691. 00. IL 11186. of. IN 18905.00.

Here are found three Parts of the Space intercepted between the two Places Eand N, viz. EG, GI, IN, not exactly in the Meridian Line it felf $\mathrm{N} \alpha$; but fo as the Meridional Diftances may be found by the following Operations. Alfo afer they had found the Length of G I and IN by another Series of Triangles, as they had done before in the line GE, they propofed to meafure a new flraight Line RS (and found it to be 3902 Fatb.) by which the Meafures of the a-
and fo be a Foundition to them in their proceeding to the Point Q .
Hence were $\begin{cases}\text { M L } & 6037 . \\ \text { I N } & 18907 \\ \text { I G } & 17564 .\end{cases}$
In the $14^{\text {th }}$ Triangle LMO. LMO 58. 21. 50. MOL 68. 52. 30. Fath. Fe. ML 6037. 00. Hence LO 55 10. 03.

In the $1^{\text {th }}$ Triangle NOL. NOL 115 . O1. 30. ONL 27.50. 30. Fatb. Fe. LO 5510.03. Hence NO 7122. 02.

In the $6^{6 / h}$ Triangle NOP N PO 72. 25. 40. PNO 67. 21. 40. Fath. Fe. NO 7122. 02. NP 4822. 04.

In the $17^{\text {th }}$ Triangle $N P Q$. NPQ 83. 58. 40. PNQ70. 34.30. Fatb. Fe. NP 4822. 04. NQ11161.04. Therefore
they had got
the Lines $\left\{\begin{array}{llll}Q N & 11161 . & 4 . \\ N & 18907 . & 0 . \\ \text { I G } & 17564 . & 0 . \\ \text { G E } & 31895.0 .\end{array}\right.$

But before they could actually fet upon meafuring the Earth, all thefe were to be referred to the Meridian Line $\alpha \beta$ paffing thro' the Point N, that there Lines following might be known, viz.
of which the Line β a is compounded, fhewing the Diltance between $Q \beta$ and αe, Parallels of Latitude of the Places Q and E. For this being found, and an Arch of the Meridian intercepted between the fame Parallels being known, they had in Effect obtained their Defire, viz. the Meafure agreeing to a known Part of the Periphery of the Earth.

Let therefore $\beta \mathrm{N} \gamma \delta \alpha$, I θ, G e be Parts of the Meridian Circle, paffing thro' the Places N, I, G; alro Q $\beta, \mathrm{I} \gamma, \mathrm{G} \delta$, and $\alpha \mathrm{E} \subseteq$ Parallels of Latitude paffing perpendicularly thro' thofe Meridians in the Places QIGE.

Then in the Triangle QBN rightangled at β, the Inclination of the Line QN to the Meridian Line $N \beta$ is obferved, viz.

> The Angle QN β 180. $5^{\prime \prime}$.
> Fatb. Fe.
> And the Line $N Q$ is $11+61.4$.
> Hence NB 10559.3.

In the Triangle N_{γ} I rectangled at γ,

2 NI ${ }^{\circ}$. $9^{\prime} \mathrm{rog}^{\prime \prime}$. Fath. Fe.
IN i8907. 0. Hence N_{2} 18893.3.

In the TriangleG I θ, rectangled at θ, GIO 1. 9. o. Fath. Fe .
I G 17564. 0. Hence I θ, or 2 of 17560.3 .

In the Triangle $\mathrm{GE} \varepsilon$, rectangled at ε,
$\mathrm{EG} \varepsilon 00.26 .00$.
Fatb. Fh. GE 31895. O. Hence $G \stackrel{s}{s}$, or δ \& 31894. O $^{\circ}$

Hence the Diftance between the Parallels of the Places N and E , viz. the Sum of the three Lines, $N_{\gamma}, \gamma \delta, \delta x$, is 68348 Fathoms; to which if the Line $N \beta$ be added, it will make up the Diltance between the Parallels of the PlacesQ and E 78907 Fath. 3 Feet.

Then it remained to obferve the Difference of Latitude of the Places E, N, and Q; or the Arches of the Meridian intercepted between their Parallels. To which end there were taken three Stations, a little diftance from the Places themfelves; for the fake of better Obfervation.

The firf Station was diftant from the Place E 18 Fathoms Southward; the fecond from the Place N 65 Fatboms Northward; the third from the Place Q 75 Fathoms Eaftward.

The Arch of the Meridian intercepted between the firft and fecond Station was found to be 1°. $1 \mathrm{I}^{\prime} \cdot 57^{\prime \prime}$. between the fecond and third was 122. 35.

But if 83 Fath. (the Sum of 18 and 65 , by which the firf and fecond Station were further than the Place N and E) be added to $68: 348$ (that is to the Line $\mathrm{N}_{\text {a }}$ the Diftance between the Parallels of the two Places N and E) the Sum will be
68.431 Fatb. (the Ditance between the Parallels of the firt and fecond Station) which is equal to an Arch of $\mathrm{t}^{\circ} 11^{\prime} 57^{\prime \prime}$. Therefore the Length of 1 Degr. is 57064 Fath. 3 Feet. Alfo if 57 Fath. (the Difference between 75 and 18) be fubfracted from 78907 Fath. 3 Feet (the Diftance between the Parallels of the Places Q and E) the Remainder will be 78.850 Fatb. 3 Feet. (the Diftance between the Parallels of the firft and third Station) which agrees to the Arch of $1^{\circ} .22^{\prime} .55^{\prime \prime}$. Hence \& Degree is 57.057 Fathoms.

Therefore there was taken for 1 degr. 57.060 Fatb. an intermediate Number betwixt there two.

Thus with great Labour they acquired the Meafure of 1 Degr. of the Periphery of the Earth as accurately as poffible. Neverthelefs it is to be confeffed, the Difficulty of making Obfervations (efpecially thofe about the Latitude of the Place) was fo great, that it really baffled the profound Endeavours of the diligent Obfervers. And tho' the Inttrument was exquifitly divided, and of 10 Foot Radius, yet they could not avoid an Error of 2 Seconds, which on the Earth make 22 Fathoms; by which the obferved Latitude of each Place might be wrong.

Since this Error could not be avoided, it was thought neceflary to meafure a greater Space, fo that it might be divided among more Degrees, by which means a leffer Portion of it would fall to any one.

This the famous Calini effeEled a few Years ago, at the Command of the moft Chriftian King, as he was marking a Meridian for the O'fervatory at Paris, thro' the South Provinces of France. He then meafured with the fame Care all that Space between Paris and the Pyrenean Mountains; to which if the former Diftance between Malvofine and Amiens be added, they make $7 \frac{1}{2}$ Degr. Hence the Meafure of the Earth is procured more accurately, and concluded on more fafely, than from the former Obfervations only. And by this Menfuration he found I Degr. to make 57.292 Fath. which by the former was computed to be 57.060 Fath.

Monfeur l'Abbé Bignon tells us, that the fame Meridian would bave been obferved round the wobole World by Minfielur de Chafel (a Perfon of great Courage and Experience) with the fame Exactnefs as it was begun; but tbat the War was at that Time every where unfortunately kindled, wobereby we are deprived of a more acturate Meafure.

But to proceed. The fame Cafini, by comparing the feveral Degrees in the aforefaid Space, thought himfelf to have found that there was no certain and determinate Meafure to a Degree; but that one furpaifed another continually towards the Equator by almoft an $800^{\text {th }}$ Part. So that to a Degree northward from the Obfervatory of Paris there were found 57.055 Degr. and to the next Degree Southward of
it $57.126_{2}^{\frac{1}{2}}$ which is more by is not towards the South, as $7{ }^{\frac{1}{2}}$. See. Hift. Afad. Scien. 1701 .

But by what we faid above, about the Figure of the Earth, in our Notes upon the third Chapter, it appears there is fome finall Difference between one Degree and another ; which can fcarcely be perceived by meer Obfervation. Tho' this Increafe

Cafini thought, but to the North. Neverthelefs, becaufe France is almoft an Intermediate between the Pole and the Equator ; the Degrees there will be in a Medium betwixt the leaft at the Equator and the greateft at the Pole.

According to the aforefaid Dimenfions,

One Degree of the Circumference of the Earth contains Paris Feet 343752 Frencb Leagues each 2000 Fath. $28 \frac{32}{5} \frac{3}{0}$ London 366669 Englifp Miles each 5280 Feet $691 \frac{183}{63}$ Rhinland 356117 Rbinland Miles each 18000 Feet $19 \frac{1411517}{180}$

Tbe Periphery of the Eartb contains
Paris Feet 123750720 French Leagues.-. $10312 \frac{14}{2} 5$
London Feet - ... 132000768 Englifb Miles $250005^{\frac{3}{5}}$
Rbinland Feet - - 128202185 Rbinland Miles--- $7122 \frac{1}{3} \frac{7}{6}$
The Diameter of the Earth contains
Paris Feet …-. 39391077 French Leagues - - $3282 \frac{2350}{760}$ London Feet … 42017149 Engliß Miles --. - 7957431590
Rbinland Feet -.. 40808032 Rbinland Miles - $22671 \frac{2023}{80} \frac{2}{6}$

Снар. 4. of Univerfal Geography. the three following Methods *. Let P B (Fig. 9.) the Altitude of a Tower or Mountain, be found out by Altimetry; and imagine PS, the furtheft Diftance from which it may be feen, to be a right Line, as being fo very fmall a Part of the Earth's Periphery; and the Triangle BPS rectangled. In which having BP and PS given, the Angle P S B may be found; which is equal to the Angle PRS, whofe Meafure is the Arch S P (b). Therefore as this Arch is to 1 degr. fo is the Diftance PS meafured by fome known Meafure to the Length of 1 degr. in that Meafure. For Example, Let the Altitude BP be 480 Paces or $\frac{1}{8}$ part of a German Mile ; and let the Diftance of P from S, the Point which terminates the Sight, be 40000 Paces, or 10 German Miles. Then by the Problem Cap. 2. fay, As PS 40000 Paces is to 480 : fo is the Radius 10000000 to 11904 , the Trangent of the Angle BS P, or SR P, or of the Arch $S \mathrm{P}$, which is $4 \mathrm{I} . \mathrm{min}$. And as 4 I min . is to 60 : fo is 40000 Paces to 59000 ; that is, about 15 Miles for I Degree.

OR the Semidiameter PR may be found without the Table of Sines, thus; As B P is to PS: fo is PS to PR: Or as 480 is to 40000 : fo is 40000 to 3333333 Paces, for the Semidiameter PR(c).
T'be fixth, but fecond T'erreftrial, Method without knowing the Diftances.
THE fame Semidiameter PR (Fig. 9.) may be thus found. Suppofe P B to be a high Mountain,

[^5] found by a Plumb-line to be, fuppofe, $100 \mathrm{~Pa}-$ ces: If a Mountain, the Height PB may be known by Altimetry to be, fuppofe, 480 Paces. Then with a Quadrant at the Top B, find the Angle at the furtheft Point of Sight P BS 88 degr. 37 min . wherefore B R S will be I degr. 23 min . Let the Sine of 88 degr. 37 min . be taken from the Canon of Sines, and fubftracted from the Radius 100000000 , and then fay; As the Remainder is to the Sine of 88 degr. 37 min : fo is B P 1 oo Paces to the Semidiameter S R in Paces (d).

T'be feventh, but third Terreftrial, Metbod.

THIS Method (Fig. 9.) feems to be more accurate and fitter for Practice, where two Mountains or Eminences are ufed, whofe Diftance (without their Altitudes) is found by Longimetry. For Example, Let BP be a Mountain, Tower, or Caftle; and let ST be another, whofe Diftance, fuppofe, 5 German Miles. Firft, by a Quadrant (or otherwife) find the Angle BTR 89 degr. 45 min. and on the other Mountain the Angle T B R 89 degr. 55 min . which will make the Angle P R S to be 20 min . becaufe the three Angles T, B, and \mathbf{R}, are equal to two right Angles, or 180 degr. Then fay as 20 min.: 60 min. : : 5 miles to 15 Miles for I Degree (e).

THESE are the chief Methods of meafuring the Earth; for by knowing the Meafure of I degr. the whole Perimeter, Diameter, Superficies, and Solidity, may be found.

B U T the Perimeter of the Earth, according to Snellius, is 6840 Dutcb Miles, or 10260000 Rbinland Perches, or 123120000 Feet. Therefore the

$$
\begin{array}{lll}
\text { (d) See Prop. 14. of Cbap. 2. above. } & \text { (c) Ibid. }
\end{array}
$$

Снар. 4. of Univerfal Geography.
Semidiameter of the Earth is, by the Prob. of Cbap. 2. found to be $1088 \frac{1}{4}$ Miles, or 1633190 Perches, or 19598300 Feet; and the Superficies 18811353 ? fquare Dutch Miles*.

A N D the Solidity of the whole is 40956831512 Cubic Miles.
BUT becaufe accounting by German Miles is more common, 15 of which make a Degree, there may be ufed on this Condition, that 15 of fuch Miles may equal 19 Holland Miles, or that one Mile may contain 1900 Rbinland Perches, or 22800 Rbinland Feet.
OF fuch Miles the Circumference of the Earth is 5400 , the Semidiameter 860 , the Superficies 9278181 fquare Miles, and the Solidity 2656933^{84} cubic Miles.

Y E T the Italian Miles are moft commodious, 60 of which make a Degr. and a Mile a Minute. Tho' thefe Italian Miles are to be computed fuch as each of them may contain 475 Rbinland Perthes. The Circuit of the Earth in this Meafure is 21600 Miles, and it's Semidiameter 3440 .

THESE Things being explained, let us next confider why the abovementioned Meafures of feveral Authors differ; and what is wanting in each.

IN the firf Method, thefe Things are dubious. 1. The Elevation of the Pole might, perhaps, have been taken wrong. 2 . It may be doubted whether the Places obferved were in the fame Meridian or no. 3. Their Diftance is not particularly known; nor the Meafure which the Arabians then ufed. So that in this Menfuration thefe Things are required. 1. The Length of their Mile (ac-
counted

[^6] not well known to us. 2. They do not fhew us the Situation of the Places whofe Latitude they took; neither can we be certain of their Diligence in taking them. 3. Nor do they tell us by what Method they meafured their Diftances.

IN Eratoftenes's Menfuration, thefe Things are to be obferved. 1. He did not add 15 min . (for the Angle made by the Sun's apparent Ray $x z$ and the true central Ray) (Fig. 7.) to the Arch found BZ7 degr. 12 min . 2. He did not prove Syene and Alexandria to lie under the fame Meridian. 3. The Termination of Shadows cannot be accurately obferved; and alfo a Style at any other Place within 150 Furlongs of Syene would have been without a Shadow. 4. He took the Diftance between Syene and Alexandria from common Computation which is feldom exact ; neither do we certainly know the Length of his Furlong.

I N Pofidonius's Method thefe Errors may be objected. 1. He fuppofed Canopus not to rife above the Horizon of Rhodes; tho' it is known to be elevated two Degrees there : however, he could not be fure it exactly touched it. 2. He determined the Diftance between Rboles and Alexandria by Guefs, and computed Voyages. 3. The Length of his Furlong is not truly ftated. 4. It may be doubted whether Alexandria and Rbodes lie under the fame Meridian, $E^{\circ} c$.

I N the Terreftrial Methods there are thefe Defects. 1. An Error is eafily committed in taking the exact Altitude of any Mountain. 2. The extream Point of Vifion cannot be exactly determined, by reafon of the Refraction and the Weaknefs of the Sight.

THUS far concerning the Dimenfions of the Earth's Perimeter, it's Semidiameter, Superficies, and Solidity; from whence we might compute it's

Chap. 4. of Univerfal Geograpby.
Solidity or Weight: but becaufe it's Parts are of different Gravities and Textures unknown to us, we cannot fo well determine it's Weight but by Suppofition.
IT muft be remember'd that the Semidiameter of the Earth is the Model of all Celeftial Dimenfrons, both in determining the Diftances of the Planets from the Earth, and from one another, and in computing their Magnitude. Thus we fay, the Sun is diftant from the Earth 1200 Semidiameters, and the Moon 59, $\Xi^{\circ} c$.

I N Geograpiby, not only the greater Circles, as the Equator, $E^{\circ} c$, are to be confidered, but alfo the leffer are of Ufe, that are parallel to the Equator, viz. how many Miles, or Perches, make a Degree in fuch or fuch a Parallel ? Therefore we have taken the following Table out of Snellius, and have added to his Meafure of a Degree in Perches, the fame in German, Dutcb, and Italian Miles.

ATable Serwing the Extent of one Degree in the feveral Parallels.

The Latitude of the Place, or the Diftance of each Pa rallel from the Equator.

	Pertbes in I Degr.	$\begin{gathered} \text { Holland } \\ \text { Miles } \\ \hline \end{gathered}$	$\begin{aligned} & \text { German } \\ & \text { Miles } \\ & \hline \end{aligned}$	Italian Miles
$\overline{\text { Deg. }}$		Miles Perch.	$\overline{\text { Miles Min. }}$	Miles Min.
Equ.	28500	19	150	60
1	28496	${ }^{1} 18.1496$	1459	5959.
2	28483	\% 181483	1459	5958
3	28461	181461	145^{8}	5954
4	28431	18.1431	1457	5951
5	28392	1181392	14.56	5945
6	28344 28288	181 181344 181288	1455 14.53	59.41 59.34

$\begin{aligned} & \text { Lat i- } \\ & \text { tude } \end{aligned}$	Perches in 1. Degr.	Holland Miles	German Miles	Miles
Deg.		Mikes	Miles Min	Miles Min.
8	2822	181223	1451	5925
9	28149	181149	1448	5916
10	28061	181067	1446	596
11	27976	18976	1443	855
2	27877	18877	1440	5842
13	27769	18769	1437	5829
14	27653	18653	143	5814
15	27526	$18 \quad 529$	1429	575^{8}
16	27396	18396	1425	5742
17	27255	18255	1421	5724
18	27105	18105	1416	574
19	26947	$17 \quad 447$	1411	5644
20	26781	171291	146	5624
21	26607	171107	140	560
22	26425	17925	1354	5536
23	26234	17734	134^{8}	5512
24	26036	17536	1342	5448
25	25830	$17 \quad 230$	13.36	5424
26	25616	17116	1329	540
27	25394	161394	1322	5328
28	25164	161164	1515	53 -
29	24927	16.927	-13.7.	5228
30	24681	16 681	13.59	5196
31	24429	16 429	1251	5124
32	24169	16169	1243	5052
33	23902	$\cdots 151402$	-12-35	5020
34	23628	151128	1226	4944
35	23346	15846	1217	$49 \quad 8$
36	23057	15557	128	4832
37	22761	15 261	1159	4756
38	22458	141458	115	4716
39	22149	141149	1139	4639
40	21832	14.832	1129	460
41	21509	4.509	11 19	4516
42	21180	14180	119	4436
43	20843	131343	$10{ }^{8}$	4352
44	20501	131001	10.47	438
45	20152	13652	1036	42.24
40	19798.	13298	1025	4140
47	19437	130	1014	410
48	19970	121070	102	408

Сн A. .4. of Univerfal Geograpby.
63

$\overline{\begin{array}{l} \text { Lati- } \\ \text { tude }- \end{array}}$	Percbes in 1 Degr.	Holland Miles	German Miles	Italian Miles
$\overline{\text { Deg. }}$		Miles Percb.	Miles Min	Miles Min
49	18698	12.698	950	3920
50	18319	$12 \quad 319$	938	$3^{8} 32$
51	17936	111436	920	3744
52	17546	1111046	914	
53	17152	11652	92	36
54	. 167.52	11252	849	3526
55	16347	$10 \quad 1347$	836	3424
. 56	15937	10.937	823	$33{ }^{2}$
57	15522	10522	810	3240
58	15103	10103	757	3148
99	\$4699	91179	744	310
0	47250	9750	730	30
61	13817	9317	716	
62	13380	81380	$7{ }^{7}$	28
63	12939	8939	$6{ }^{6} 8$	2712
64	12494	8494	634	2616
65	12045	8 -45	620	25.20
66	11592	71092	66	2424
67	11136 10676	$\begin{array}{ll}7 & 639 \\ 7 & 176\end{array}$	${ }_{5}^{5} 5$	${ }^{2} 328$
69	10676 10213		$\begin{array}{r}538 \\ 523 \\ \hline\end{array}$	2232
70	19748	$\begin{array}{r}61213 \\ 6748 \\ \hline\end{array}$	$\begin{array}{r}523 \\ 58 \\ \hline\end{array}$	21 20 20 32
7^{71}		6279		
72	8897	51307	438	1832
73	8333	5933	423	1732
74	7846	5346	48	1632
75	7376	41376	353	15.32
76	6895	4895	$3{ }^{38}$	1432
77	6411	4411	323	1332
78	5925	3 1425	38	1232
79	5438	3938	2.52	1128
80	4949	-3 449	2. 36	1024
81	4458	21458	220	
82	3966	2. 966	25	820
83	3473	2473	${ }^{1} 50$	720
84	2979	11479	134	$6: 12$
85	2484	1984	118	512
86	1988	1488	13	412
87.	1492	- 1492	047	312
88	995	- 991	031	24
89 90	497	- 498	$\bigcirc 16$	

C H A P. V.

Of the Motion of the Earth.

THE Pytbagorean Motion or Circumvolution of the Earth (not a Nutation or Quaking) is according to the Copernicans the Caufe of moft of the Changes in the Celeftial Appearances, which would otherwife be conftantly the fame in every Place (a). Tho' indeed there is not any Property
(a) This Syftem was not invented by Pythagoras, as fome imagine, for Diogenes Laërtius exprefsly faith, that Pytbagoras's Opinion was, Tbat the World zoas round, containing the Eartb in the middle of it; and that Pbilolaus, the Pytbagorean, was the firt that faid the Earth moved in a Circle: But fome fay Hercetas the Syracufan. Derban's Aftro-Tbeology.

Pytbagoras, who lived in Society with the Egsptian Priefts feven Years, and was initiated into their Religion, carried home from thence, befides fe. veral Geometrical Inventions, the true Syftem of the Univerfe, and was the firf that taught in Greece, that the Earth and Planets turned round the Sun, which was immoveable in the Center; and that the Diurnal Motion of the Sun and fixed Stars, was not real but ap-
parent, arifing from the Motion of the Earth round it's Axis.

The next Perfon who made a confiderable Figure this way, was Ptolemy with his Cycles, Epicycles, and Eccentrics, he quite burthened Nature, and his Hypothefis fhews too much of Art; thefe are all now exploded, and his folid Spheres broke to pieces; he left behind him a Work entitled Almageff, or the great Conftruction, which was founded on the Obfervations of Hipparchus.

Copernicus had the Honour to reftore the ancient Pytbagorean Syftem, notwithftanding the Prepoffeffion the Ptolemaic had gained in the World.

To thefe fucceeded the Noble Dane, Tycbo Brabe, whofe Hypothefis in a great Meafure is compounded of the other two, and feems defigned to account

Ch AP. 5. of Univerfal Geography.
65 of the Earth fo much difputed againt and cavilled at as this ; fo as even not long ago to have undergone the Cenfure of the Romi/b Church. However, becaufe it feems very probable to many that there is fuch a Motion, we fhall endeavour to explain it.
I T is known to all, even the Vulgar, that the Sun, Moon, and Stars, appear to move from Eaft to Weft, and to return to almoft the fame Places again in the Heavens, in the Space of twenty four Hours. So that either they muft really move, or we our felves be moved; and attribute our Motion to them. For it is a felf-evident Principle, that if two Things change their |Diftance from one another, one of them, at leatt, muft have moved.

THAT the Earth is fixed, or at Reft, and the Stars with the Heavens in Motion, was a common Opinion ; and is fo ftill among thofe that are accounted Potolemaic Aftronomers: But the Pytbagoreans of old maintained, that the Stars conftantly kept their Places; and that the Earth was revolved about it's Center. Of which Sect was the celebrated Ariftarchus of Samos; who, for defending this Opinion, was by his Enemy and Adverfary accured, before the Bench of the Areopagites, of having violated the Laws of Religion ; but was fortunately abfolved by them *. Afterwards, but very
for the difficulties of both of them, and fo is liable to feveral Objections in them both. He was yery skillfal in obferving, and in the Furniture of his Ob. fervatory exceeded even Princes and Kings.
Fobn Kepler, the lat I mall mention, by the help of Tycbo's Labours, found out the Laws VOL. I.
the Celeftial Bodies obferve in their Motion, and laid the Ground-work of the Modern Philofophy. Thus I have given a fhort Sketch of the Rife and Perfection of this Science.

* The Great Galileo, the Modern Affertor of the fame Doctrine, met with the fate of the ancient Samian Philoropher;

He Ages; infomuch that we find not the leaft mention of it in the Schools, till the famous Aftronomer Copernicus, about 200 Years ago, brought it again into Eftimation, and backed it with feveral Arguments, fo that many excellent Aftronomers after him embraced it; among whom flourifhed not long fince the great Kepler, Profeffor of Mathematics to the Emperor; and Galileo an Italian, Mathematician to the great Duke of Tufcany; as alfo Lanßerg a Dutcbman.

A ND whereas we obferve two apparent Motions in the Heavenly Bodies (one by which all the Stars both fixed and wandering feem to be carried about the Earth, and to rife to the Meridian, and fet under the Horizon nearly in the fame or equal Times: The other, which is called their Annual Motion; by which the Planets with different Motions, and the fixed Stars with equal Velocity, are carried the contrary Way from Weft to Eaft) the Ptolemaics affirm both thefe Motions to be in the Stars themfelves, or in their Orbs; But the Copernicans attribute this firtt apparent Motion to that real one of the Earth, not in being transferred from one Place to another, but to it's Rotation about il's Axis from Weft to Eaft, while it continues ftill in it's own Place (which caufeth the apparent Motion of all the Stars the contrary way). And they alfo free the Sun and the fixed Stars from the aforefaid annual Motion, by attri-

He was brought before the Inquifition, and obliged folemnly to abjure his Aftronomical Tenets, that the Sun ftood immovable in the Midft of the Univerfe, and that the Earth soned round it, as about it's
proper Center. The poor Man was forced to fay, that he did, with a fincere Heart, and Faith unfeigned, abjure, curfe, and deteft, the aforefaid Errors and Herefies.

Снар. 5 . of Univerfal Geography.

buting the apparent Motion of thefe to the real annual Motion of the Earth round the Sun ; and to the Inclination of it's Axis: Notwithftanding they affign this faid annual Motion to the reft of the Planets; only they deny the Sun to be a Planet, and advance him to the Center of the Syfem, where Ptolemy had placed the Earth; and make the reft of the Plancts, Saturn, Fupiter, Mars, the Eartb, Venus, and Mercury, revolve round him.

T H E Reafons for the Copernican Hypotbefis are thefe.

1. THE Motion of the Earth round it's Axis, continuing in the fame Place, will beft account for the Appeazance of fuch a vaft Number of Stars which feem to perform their Revolutions round the Earth in 24 Hours; and therefore this Motion is moft agreeable to Reafon: As it happens with us when we fit in a Ship, failing towards others at Reft in the Harbour; tho' they feem to approach and come nearer us, yet we do not affign that to any Motion in them. And as Nature never performs that by many means which may be done by a few; it is very likely the fame Rule is obferved here.
2. THE Motion of the Stars would thus be incredibly fwift and beyond all Imagination; becaufe their Diftance, in Reipect of us, is almoft infinite, and the Orbit they have to run round fo prodigioufy great, that they muft move at leaft 100000 Miles in a Minute: On the other hand, if this Motion be affigned to the Earth, we need not introduce a progrefive Celerity; for tho fhe remains ftill in the fame part of Space, fhe folves the Phanomena by revolving about her Axis.
3. T H I S Argument is the ftronger if we compare the vaft Bulk of the Celeftial Bodies with the Bulk of the Earth. For as the Sun is at leaft 200 times bigger than the Earth, and fome of the fixed Stars 1000 times; it is much more probable, that the Earth revolves round it's Axis with an eafy natural Motion, than that fuch vaft Bodies fhould move from one Place to another with incredible Swifnefs.
4. THE moft celebrated Aftronomers are, with Tycbo, forced, by the Phænomena, to deny that there are folid Orbs, fuch as the Ancients made ufe of the better to explain their imaginary Motion of the Stars; hence their Arguments for this diurnal Rotation about the Earth, are lefs cogent. The Reafon why they are forced to deny this, is, becaufe that one Planet is often feen within the Orb of another; which muft caufe a mutual Penetration.
5. N O Reafon can be given why the Stars fhould move round the Earth: But, on the other hand, it is moft agreeable to Reafon, that the Earth, and the reft of the Planets, fhould move about the Sun.
6. NEITHER the Pole nor the Axis about which the Stars are fuppofed to revolve, is real: On the contrary, there is a known Pole and Axis in the Earth.
7. FOR this Reafon alfo Navigation is much eafier from Weft to Eaft than the contrary Way. For they can fail from Europe to India in about four Months; but can fcarce return in fix Months: becaufe in their going they move to the fame Point with the Earth; but in their returning they fteer contrary to the Earth's Motion.
8. BECAUSE the Celeftial Pbanomena, fuch as the rifing and fetting of the Stars, the Inequality of Days, \mathcal{E}°. cannot be accounted for, by any other Motion than that of the Eartb. And the Commodioufnefs and Neceffity of this Hypothefis, is more particularly perceived in the wonderful Appearances

CH AP. 5. of Univerfal Geograpby. 69 pearances of the Planets; for explaining of which the Ptolemaics are forced to fuppofe feveral unneceffary interfering Circles, Epicycles, and Eccentrics, without any Reafon: Whereas the Coperricans can naturally account for them all, (without any previous Suppofitions,) by the annual Motion of the Earth, or it's Revolution round the Sun, viz. 1. Why the Planets feem fometimes retrograde; and why Saturn is oftener and continues longer fo than fupiter; and fupiter oftener and longer fo than Mars, \&cc. and alfo why they are carried fometimes with a fwifter Motion, and at other times appear ftationary. 2. Why Mercury and Venus can never be feen a whole Night together. 3. Why Venus is never carried further from the Sun than 48 degr. and Mercury never more than 28 ; and fo can never be feen in Oppofition to the Sun. 4. Why Venus may be feen in the Evening after the Sun is fet ; and the next day in the Morning before the Sun rifes, $\xi^{\circ} c$.
I FORBEAR to mention any more Phænomena, (thefe being the principal from whence a folid Argument may be drawn for the Motion of the Earth) fince they are all eafily and naturally accounted for upon this Hypotbefis; fo that it would be ftrange if the Earth fhould not move, when fuch evident Appearances require fuch a Motion. And tho' there Arguments are not demonArative, yet they render this Hypothefis preferable to the other, which fuppofeth the Motion of the Heavens. And we muft admit of the one or the other.

BUT the Arguments which fome alledge to the contrary are eafily anfwered; fuch as, 1 . The Earth is not fit for Motion, becaufe of it's Gravity. 2. The Parts of the Earth naturally tend in a right Line to the Center ; and therefore a circular Motion is againft Nature. 3. If the Earth Tower would not fall juft at the Foot of it. 4. A Ball fhot from a Cannon Eaftward at a Mark, could not come home to it, if the Mark with the whole Earth did at the fame Time move towards the Eaft: or at leaft would hit the Mark fooner when fhot towards the Weft, Alfo a Bird flying towards the Eaft would be retarded : but forwarded in llying the contrary Way. 5. Towers and Buildings could not ftand upright, but would fall: and Men, by the quick Rotation, would become giddy. 6. Becaufe (fay they) the Stars are obferved to change their Places, but not the Earth, 7. Becaufe the Earth is in the Center of the World ; but the Center of any Thing is not moved. 8. Becaufe the holy Scriptures confirm the Stability of the Earth,

T O all which the Copernicans anfwer thus. To the firft, that the whole Earth, taken together, is not abfolutely heavy. For Gravity confifts in the Tendency of the homogeneous Parts to the whole; and tho' this kind of Gravity be found in the Sun and Moon, they are neverthelefs not accounted weighty.

TO the fecond they anfwer, that the circular Motion of the whole does in no wife hinder the relative Motion of the Parts, which are moved in in a direct Line towards the Center; as appears by the Parts of the Sun and Moon.

T O the third they anfwer three ways, I. That heavy Bodies are not carried directly towards the Center of the Earth, but in the fhorteft Lines poffible to it's Superficies; which are thofe parallel to the Tower; as Iron does not tend to the Center of the Loaditone, but to the Loadftone it felf. 2. The whole Atmofphere adheres to the Earth, and is moved along with it: therefore when Bodies are thus let fall, they partake of this circular

Motion, and are carried downwards as it were in a Veffel. 3. Gaffendus, by repeated Experiments, found, that if a Body be projected from another Body in Motion, it will partake of the Motion of that other Body; as a Stone dropped from the Top of a Maft, while the Ship is in a very fwift Motion, is not left by the Ship but falls at the Foot of the Maft. Alfo a Ball fhot perpendicularly from the Foot of the Maft falls in the very fame Place. Therefore the Objection is of no Force.

T O the fourtb they anfwer as to the third.
THE ffth Objection hath no Place, becaufe the Motion of the Earth is even and uniform, without dafhing or ftriking againft any other Body; and the Buildings being heavy Bodies, and homogeneous to the Earth, are moved as if they were in a Ship; which tho' it fails either fwiftly or nowly, yet if the Motion be even and fteady without Waves and on fmooth Water, Bodies fet upright will not be overturned, nor a Glafs of Wine be fpilt.

TO the $\delta_{2 x t h}$ we anfwer, that we are not fenfible of any Change of Place in the Stars, only of their Situation in Refpect of our felves; which may appear and really be, whether we with the Earth, or the Stars themfelves are moved; or even tho' both we and the Stars fhould be in Motion (b).
(b) Moft of thefe Objections are anfwered by the Laws of Mechanics, thus: Let W, E be the Line of Motion of a Ship from W to E, reprefenting the Motion of the Earth from Weft to Eaft. Let MT (in Fig. 9) be a Maft, from the Foot of which, M, fuppofe a Body to be thrown perpendicularly to
the Top T, in the fame Time that the Ship moves from M to D. From the Conjunction of thefe two Forces (M T the Projection, and MD the Ship's Motion) it is manifelt, by the known Laws of Motion, that the Body will not be carried perpendicularly to the place T, but in the Diagonal Line

MB, fo as to accompany the Malt in it's Motion from M T to BD. Then fuppoie the Body to fall from the top of the Maft B to the foot D, in the fame Time the Ship moves from D to G ; and it is plain, that, by the mutual acting of BD , the centripetal Force, and BF=DG, the Ship's Motion, the Body will fall in the diagonal Line BG, and alfo accompany the Maft in it's Motion from D to G; fo that tho' it was really carried in the Lines MB, B G, yet it will feem to have moved, only upwards and downwards, parallel to the Line F G.

Alfo (in Fig. 10.) let M T be the fame Maft, and fuppofe a Projectile to be caft eaftward from the Stern S, to the top of the Maft T, in the Time the Ship moves alfo eaftward from M to D ; then will it's Motion upwards defcribe the Diagonal S B; where let it be obftructed fo as to feem to fall perpendicularly to D , in the Time the Ship moves from D to \mathbf{G}; then, as before, it will defrribe the Diagonal B G, tho' it feemed to move upwardsonly in the Line TS, and downwards in FG

So (in Fig. 11.) if a Body be projected weftward from the Head of the Ship H to the top of the Malt T, in the Time it moves caftward, HG equal to the Diftance MH, then will it's Motion upwards defcribe
the perpendicular Line H B. And if in the fame time it feems to defcend from B to H that the Maft moves $\mathrm{HG}=$ G $t=\mathbf{M ~ H}$, it's Motion downwards will defcribe the Diagonal B G. So that, in this Cafe, it afcends by a perpendicular Line, and falls by an inclining Line; tho' it feemed to afcend by the inclined Line 6 F , and to fall by the perpendicular Line F G.

Hence it is plain that Bodies may appear to have a Motion, directly contrary to their real and abfolute Motion: fo that it is pleafant to conceive, how fally we may judge of the Motion of Bodies by their unequal Diftance from us; not confidering that we may be infenfibly moved from them.

Hence alio is deduced that ingenious Experiment of Galilao, mentioned in Derbam's Aftro-Tbeology, as follows.

- Shut yourfelf up (Says be)
- with your Friend in the great
- Cabin of a Ship, together
- with a Parcel of Gnats and
- Flies, and ocher little winged
- Creatures. Procure alfo a - great Tub of Water, and put
- Fifhes therein. Hang alfo a
- Bottle of Water up to empty
- itfelf, drop by drop into ano-
- ther fuch Bottle placed under-
' neath with a narrow Neck.
- Whillt the Ship lies aill, di-
- ligently obferve how thefe
- little winged Creature fly - with the like fwiftness to eve-

Снар. 5.

TO the cigbtb is anfwered, I. The holy Scriptures, in phyfical matters, always feeak according to Appearances, and the Capacity of the Vulgar ; as where the Moon is faid to be a great Ligbt created to give Ligbt in the Nigbt (c): tho' the Moon
sy Part of the Cabin; how

- the Fifhes fwim indifferently
- towards all Sides; and how
- the defcending Drops all fall
- into the Bottle underneath.
- And if you throw any thing
- to your Friend you need ufe
- no more Force one way than
- another ; provided the Di-
- ftances be equal. And if you
- leap, ycu will reach as far
* one way as the other. Hav-
- ing obferved thefe Particulars
* whilf the Ship lies fill, make
* the Ship to fail with what
- Velocity you pleafe; and fo
- long as the Motion is uni-
- form, not fluctuating this
- Way and that Way, you fhall
- not perceive there is any Al-
- teration in the aforefaid Ef-
- fects; neither can you from
- them conclude whether the
- Ship moveth or ftandeth ftill.
- But in leaping you fhall reach
- as far on the Floor as you did
- before; nor by any Reafon

6 of the Ship's Motion fhall you

- make a longer Leap towards
- the Poop than the Prow;
- notwithftanding that whillt
- you were up in the Air, the
- Floor under your Feet had
- run the contrary Way to - your Leap. And if you caft
- any thing to your Compa-
- nion, you need ufe no more
- Strength to make it reach
- him, if he fhould be towards
- the Poop, than if you ftood - in a contrary Pofition. The - Drops fhall all fall into the
- Bottle that is lower ; and not - one towards the Poop, al-- tho' the Ship fhall have run - many Feet, whilft the Drop 6 was in the Air. The Fifhes ' in the Water fhall have no - more Trouble in fwimming - towards the fore part of the 6 Tub, than towards the hin-- der Part ; but fhall make to - the Bait with equal fwiftnefs 6 on any Side of the Tub. - And laftly the Gnats and Flies - fhall continue their Flight in-- differently towards all Parts, - and never be driven together - towards the Side of the Ca-- bin next the Prow; as if - wearied with following the - fwift Motion of the Ship. - And if by burning a few - Grains of Incenfe you make - a little Smoak; you fhall - perceive it to afcend on high, - and hang like a cloud, moving - indifferently this Way or 6 that, without any inclination - to one Side more than ano' ther.' All which Obfervations depend upon the aforetaid Laws of Mechanics; and fufficiently anfwer the moft confiderable Objections, deduced from Philofophy, againtt the Motion of the Earth.
(c) Ger. i, 16.
be not great in Refpect of the Eartb and fixed Stars, nor hath any Light in itfelf; neither doth it give Light to the Earth every Night. Thus the Sun is faid to go fortb from the End of the Heavens, and to bafe to it again (d); whereas in Truth there is no fuch End to be found. So in the Book of $90 b$ (e), the Earth is faid to be of a plane and fquare Figure, underpropped and fupported with Pillars; which is not to be undertood in a literal Senfe, as even the moft ignorant may perceive (f) : More
(d) Pfal. xiz. 6. Ecclef. i. 15.
(e) $\mathrm{F}_{0} \mathrm{~b}$ ix. 6. xxviii. 24.
(f) Befides, Things are often fpoke of as they appear, not as they really are. For as St Hierom fays (upon the thirteenth Chapter of St Mattberv) It is the Cuftom of the Scriptures, for the Hiftorian to relate the Opinion Men bad of many Matters, as at that Time thoje Maters were by all People taken to be. And in another Place. Tbere are many Tbings in the Holy Scriptures, wbich are Spoken according to the Opinion of the Time in wobich they zeere done; and not according to Reality. And we foould find very abfurd Conclufions would follow the taking of thefe Texts in a literal Senfe. For in $7_{0}-$ fbua x. 12, 13. the Sun is ordered to fand fill upon mount Gibeon, and the Moon in the valley of Ajalon. But it would be very abfurd to take this in a Itrict literal Senfe, and imagine thofe two great Luminaries were confined to thofe two Places, otherwife than in Appearance to the victorious Lifrae-
lites. And if fo confiderable a Part of the Tranfaction be fpoken according to it's Appearance, why may not the whole ? Why might not this Station as well be an Arreft of the Earth's Motion, as that of the Heavens? If the whole Miracle was not (as fome not improbably think) effected by Means of fome preternatural Refractions, or extraordinary Meteors, $\xi^{\circ} c$. And fo for the Recefs of the Sun, or it's Shadow in Hezekiab's Cafe (2 Kings xx. 10. and Ifai. xxxviii. 8.) which in appearance feemed to be the Sun, is, by divers learned Men, thought to have been the Effect of fuch like extraordinary Refractions or Meteors, as mentioned in the laft Cafe: Or if it was a real Regrefs, why not of the Earth rather than the Sun and whole Heavens? See Derban's Aftro-Tbeol. Befides, Hiftoriographers feldom confine themfelves to a Geometrical or Aftronomical nicety in their Defcriptions of Things. As, in 1 Kings vii. 23. it is written, that Solomon made a molten Sea, tex cubits from one

More Places might be quoted, but thefe are fufficient; for the holy Scriptures were not given us to philofophize by, but to increafe our Piety. 2. Some Places of Scripture are alfo produced, which do not fpeak of the Mobility of the Earth, but of it's Stability and Permanency ; as that in Yob aforefaid (g).
THUS we have declared in brief what that Motion is, which the Coperricans affign to the Eartb; the more full and accurate Explication of which belongs to Afronomy. And this Motion being fuppofed, all the Phænomena we obferve in a Globe revolved about it's Axis, muit be applied to the Earth, viz. That the Axis upon which it is turned, is one of the Diameters : That the Poles are two immoveable Points in the Extremities of the Axis: That the great Circle, or Perimeter, in which the Rotation is made, is the Equator with it's Parallels, E'c,
LET us now confider the Velocity of the Eartb's Motion; which, in that about it's Axis, is not over all the Earth equal, but different according to the Diftance from the Equator; being there
brim to the otber, round all about, and a line of tbirty cubits did compa/s it round about. But as $7: 22:: 10: 31 \frac{3}{7} \mathrm{Cu}-$ bits is very near the true Length of the Line that ought to encompals a round Veffel of ten Cubits Diameter.
(g) Such as Pfal. xciii. I. cxix. 90. civ. 5. Ecclef. i. . 4and 1 Cbron. xvi. 30. which Texts are all underftood by learned Commentators to mean the unalterable Condition, Security, Peace, and Tranquility, of the Earth.

The Ambit of the Earth, by the moft accurate, is appre-
hended to be 25031,4 Miles, which, divided into 24 Hours, makes the Revolution to be at the Rate of about 1043 Miles in an Hour ; a Rotation that would as eafily throw off the Parts of the Earth, efpecially the Waters, as the whirling round of a Wheel, or a Globe, would the loofe Duft and Water thereon; but by Reafon the Gravitating Power exceeds the Centrifugal, as 2174 exceeds $7,54,064$, that is, above 288 times; therefore all Parts lie quiet and fecure in their refpective Places. Derbam's Atro-Tbeol. p. 149. fwifteft fwifteft as paffing thro a greater Space, and fo by Degrees flower towards the Poles, as paffing thro' a lefs Space in the fame Time. Therefore fince every Part of the Earth is moved thro' the Space of it's Periphery (or 360 Degr.) in 24 Hours; the Space of one Hour's Motion is found by dividing 360 by 24 , which gives in the Quotient 15 Degr. and fo much doth any Place on the Earth move (whether in the Equator or without it) in an Hour. Alfo 15 Degr. in the Equator make 125 German Miles, therefore it revolves 15 fuch Miles (or one Degr.) in 4 min. and in one min. $3^{\frac{3}{4}}$ Miles.

BUT Places without the Equator, lying towards either Pole, are in the fame Time revolved the fame Number of Degrees: but thefe Degrees are much lefs than thofe in the Equator ; fo that the Celerity of Motion, or Progreffion, is as the Sines of the Arches by which thefe Places are diftant from the Pole. Example. The Diftance from the Equator (or Elevation of the Pole) of Amferdam is 5^{2} degr. 23 min . therefore the $\mathrm{Di}-$ ftance from the Pole (or Complement of Latitude) is 37 degr. 37 min . whofe Sine is 61037 . Suppofe another Place, under the Equinoctial, diftant from the Pole 90 Degr. whofe Sine alfo is 100000 , but the Place under the Equinoctial moves 15 Miles in 4 min . and 225 an Hour. Therefore by the Golden Rule, as 100000:61037:: $15: 9$ Miles, or fo is 225 to 137 Miles. So that Amferdam is carried every Hour 137 Miles, and in 4 min. 9 Miles, by this Motion.

THIS is more eafily found by the foregoing Table; for by dividing 360 by 24 we find each Place to move 15 Degr. of it's own Circle in an Hour, and therefore I Degr. in 4 min. E $^{2} c$. cont fulting the Table with the Latitude of the Place, we find how many Miles it moves in 4 min . For Example;

CHAP. 5. of Univerfal Geography.

Example; The Latitude of Stockbolm is about 60 Degr. oppofite to which in the Table is $7 \frac{1}{2}$ Miles. Therefore Stockbolm revolves fo many Miles in 4 \min. and fuch is the firft Motion in divers Places.

THE Second Motion of the Earth, is it's Change of Place; whereby every Part of it moves the fame Space with the fame Velocity. This Motion is determined by the Diftance of the Earth from the Sun, or the Semidiameter of the Orbit in which it performs it's annual Revolution, moving in a Day about a Degr. and in an Hour $2^{\frac{1}{2}} \mathrm{~min}$.

AS to the third Motion of the Earth, becaufe it is more difficult to conceive, we fhall leave it to Aftronomers, who have found it neceffary to be fuppofed. Origanus moves a Doubt about the fecond Motion ; and fuppofes the Earth to be only moved by the firft, but the Sun and fixed Stars by the fecond: Tho' the above-cited Appearances, in the Motions of the Planets, fufficiently confirm this annual Motion (b).
(b) This imaginary third Motion of the Earth they were obliged to fuppore, to account for the difputed Inequality of the Declination of the Ecliptic, which is now by molt Aftronomers thought to be always the fame; feeing tbere is nothing which bould difturb the perpetual Parallelifm of the Eartb, on which this Equality depends, except it 乃ould be tbe infenfible Nutation of the Axis,
and the Regrefs of the Nodes: fram whicb Thing nevertbelefs no Variation of Declination, properly fo called, can arife. Wbifon's Aftron. Lect. pag. 57° That there is fuch a Nutation whereby the Axis of the Earth doth twice incline towards the Ecliptic, and twice return toit's former Pofition, fee in Newton's Prin. Pbil. Nat. Book iii. Prop. 21.

CHAP. VI.

Of the Situation, or Place, of the Earth, in Re* Jpect of the Planets and fixed Stars.

THE Situation of the Earth, in the Syftem of the World, in refpect to the reft of the Planets, hath fome Relation to the Account we gave of the Earth's Motion, in the preceeding Chapter. For it is the general Opinion of the Ptolemaic Aftronomers and Philofophers, that the Earth, being the Center of the World, is placed in the middle of the Stars and Planets (a) : But the Copernicans, with the antient Pytbagoreans, place the Sun in the Center of all the Stars, and make the Earth a Planet performing an annual Revolution about him, between Mars and Venus; as is beft undertood by a Diagram of the Syftem. Neverthelefs they both agree in this, that the Earth may be accounted the apparent Center of the diurnal Motion, by which the Stars feem to be carried about in twenty four Hours. For both Aftronomy and Geography require this Suppofition; fo that whether we adhere to the Ptolemaic or Copernican Hypothefis, we do not detract from the Certainty of general Aftronomy or Geography. Becaufe the Difference of thefe Opinions confifts only in this; that the Ptolemaics will have this Motion to
(a) Since the World, or Univerfe, is infinite, the central Place of it cannot be determined: What our Author means
by the World here is only our Solar Syftem, in which Senfe he mult be taken in what follows.
be in the Stars themfelves, but the Pytbagoreans in the Earth; the Stars in the mean time refting: neither of which need be determined in Geograpby or common Aftronomy.

ACCORDING to the Ptolemaics the Situation of the Earth, in refpect of the Planets and fixed Stars, is this; The Eartb in tbe Center, then the Moon, Mercury, Venus, Tbe Sun, Mars, fupiter, Saturn, and the Fixed Stars.

ACCORDING to the Copernicans; The Sun is placed in the Center of the Syftem, as the Heart and Focus of the World; and next him is the Orbit of Mercury, then that of Venus, the Earth, with the Moon, Mars, Jupiter, Saturn, and the Fixed Stars.

IF it be required how far diftant we are from each of the Planets, we muft know that the Diftance is not always the fame, but continually changing; and therefore Aftronomers reckon three Degrees of Diftance, viz, the leaft, greateft, and mean or middle Diftance; which laft of the Earth, from the reft of the Planets, is as follows, accor ding to moft Aftronomers (b).

NEVERTHELESS the Diftance of the Earth from Mars, Fupiter, Saturn, and the fixed
(b) See Note (m) at the end of this Chapter.

Stars, is not fo perfectly determined, for want of Certainty in their Parallaxes. Alfo in the Copernican Syftem the Diftance varieth, not only from the Motion of the Planets; but alfo from the Motion of the Earth itfelf.

THE Reafon for either Opinion, (viz. of the Ptolemaic and Copernican) about the Situation of the Earth, are much the fame with thofe we difcuffed in the preceeding Cbapter about the Earth's Motion. For this Difpute is of great Affinity with the former. Becaufe, if the Sun hath an annual Motion, then the Earth and not the Sun poffeffes the middle Place: But if the Earth fo move, the Sun and not the Earth will certainly be in the Center.

THE following Arguments favour the Copernican Hypotbefis.

1. THE Sun is not only the glorious Fountain of Light, which like a clear fhining Torch, illuminates the Earth, Moon, Venus, and, without doubt, the reft of the Planets; but is alfo the Focus of Heat, and the Source of vital Spirits; whereby the whole Univerfe is fubfirted and nourifhed: and therefore very probably poffeffeth the Center about which they all revolve.
2. I T is more likely that the Earth, with the reft of the Planets, fhould revolve about the Sun, when they receive Light and Heat from him ; than that the Sun fhould move about the Earth, when he receives nothing from it.
3. THERE are many Caufes why the Sun fhould poffefs the middle Place, and the reft of the Planets revolve round him, (efpecially if we embrace the Hypothefis of Kepler concerning the Motion of the Planets) the chief of which is, that the Sun, being a vaft Body, is moved about it's Axis, and by a ftrong [Veciory] Force exciteth the

Earth and the reft of the Planets to a circular Motion (c).
4. THIS Rotation of the Sun about it's Axis is proved from the Obfervations of the Spots upon it's Surface by Galileo (d), Scbeiner, \&xc. and we may reafonably prefume, it is owing to this common Caufe that the reft of the Planets revolve :bout theirs; but we cannot perceive a likelihood of any Motion in this Luminary (e).

5. IF

(c) The fagacious Kepler was the Founder of the Newtonian Pbilofopby: it was he that firlt found out the true Syftem of the World, and the Laws which the celeftial Bodics obferve in their Motions; it was he that determined the true Path of the Earth, and the reft of the Planets about the Sun, and difcovered the harmonic Proportions and Concinnities of their Diftances and Motions : and tho' he did not demonitrate (and fhew a Reafon for the neceflity of) fuch Laws and Proportions ; yet he gave a Hint, and laid a Foundation for that Prince of Geometers Sir ISAAC NEWTON, to demonftrate an abfolute Neceffity of thefe Laws; and that without a total Subverfion of the Laws of Nature, no other Rule could take Place in the Revolutions of the heavenly Bodies.
(d) He zvas the firft tbat applied a Telefcope to the Heavens, and by it's means difcovered a great may newo furprifing Phænomena; as the Moons or Satellites of Jupiter, and their Motions; the various VOL. I.

Phafes of Saturn; the Increafe and Decrease of the Ligbt of Venus; the mountainous and uncertain Surface of the Moon; the Spots of the Sun; and the Revolution of tbe Sun about it's own Axis: all which were firft difovered and objerved by this great Pbilofopber. Keill's Aftron. Lect. Pref. Pag. 11.
(e) From the later Obfervations of Aftronomers it is manifeft to our Sight, that alfo every Heavenly Body we have any good Views of, is turned round fome principal Point, and alfo it's own Axis, viz. hath the like Annual Revolutions, and Diurnal Motions as thofe are which we afcribe to the Earth ; yea even the more mafly Globes of Sa turn and $\mathcal{F} u p i t e r$, which feem not in their own Nature more fitted for fuch Rotations. Wherefore we may certainly conclude, that it is as poffible, and as probable, that this our leffer Globe, fhould perform it's Revolutions according to the fame Law which is ooferved in the relt of the Planets, whereby the beautiful Order and Marmony of Motions is G every
5. IF we fuppofe the Eartb placed betwixt Mars and Venus, and alfo place the Sun in the Center of the Syftem ; the Motion of each of the Planets will be exactly in Proportion to their feveral Diftances from that Center: But this will not hold in the Ptolemaic Hypothefis, as is manifeft by comparing the Motion of the Sun, Venus, Mercury, \&c. (f).
6. T H E Celeftial Pbrenomena, mentioned in the former Cbapler, to prove the annual Motion of the Earth, do likewife as effectually prove that this is the right Place in which it ought to be moved, viz. The Retrograde Motion, and Seeming Immobility of the Planets; the admirable apparent Motion [and Pbajes] of Venus and Mercury, \&cc (g). For fince the annual Motion of the Earth is prefuppofed in this Place, or in fome other very near it ;
every where preferved thro' the Frame of Nature.
(f) Sir IJaac Nezoton's Demonftration, That the Squares of the Planets Revolutions are as the Cubes of their Diflamces, every where takes Place, if the Sun be fuppofed the Center of the Planets about him ; but does not hold at all in Relation to the Earth; for if the Moon revolve round the Earth in ($2-\frac{1}{2}$ Days) a Periodical Month, as it certainly does, the Sun, as being at a greater Diftance, will take no lefs than 54700 Years, according' to the aforefaid Law, to make his Revolution about the Earth. But fince this Law, is found to be obferved not only in the primary Planets about the Sun, but alfo in the Secontaries about Gupiter, Saturn, and the Eartb, it is an inconteftable Ar-
gument that the Sun is as much the Center of the Earth and Planets about him, as the Earth is of the Moon.
(g) Thefe Obfervations, which utterly overthrow the Ptolemaic Hypothefis, are owing to later Aftronomers. For they, by their Glaffes, have found out that the fpherical Figure of Venus and Mercury, feen from the Earth, will be altered, and have the fame variety of Phafes as the Moon hath, viz. will appear opake, horned, bifected, gibbous, and full, at proper Diltances from the Sun, as explained upon the Copernican Hypothefis; which certainly eftablifhes and confirms that Order and Situation, namely that Venus and Mercury revolve about the Sun in Orbits that are included within the Earth's Orbit.

Снар. 6.
this Argument, in my Opinion, is the beft to defend it by ; fince this fituation of the Earth cannot be proved immediately from it's diurnal Motion : Becaufe it might poffels the Center of the Univerfe, and have a diurnal Motion, tho' it wanted the ane nual; as Origanus fuppofed.
7. B Y this Hypotbefis likewife, the Variation of the Diftances of the Planets from the Earth is accounted for.

THE Ptolemaics, on the other hand, oppofe the Pytbagorean Opinion, and endeavour to prove that the True Place of the Earth is in the Center of the World, by the following Arguments. I. That heavy Bodies are all naturally carried towards the Center ; but that the Earth is more ponderous than the reft, therefore it ought to refide in the Center (b). 2. Heavy Bodies would recede from the Earth towards the Center of the World, if the Earth itfelf was not in the Center. 3. The Center is the bafeft Place, and the Earth the ignobleft Part of the Creation ; therefore it ought to be placed in the Center. 4. If the Earth was placed out of the Center of the World, and was not the Center of the Stars and Planets Motion, then would the Stars and Conftellations at fome Seafors of the Year appear greater than at others (i). 5. The Medium of the Heavens could not always be perceptible, nor would Taurus rife when Scorpio fets. 6. Neither would there be Equinoxes. 7. Nor would the Moon fet, nor be eclipfed when the Sun was rifing. 8. Neither could an equal Number of
(b) This Affertion is falle: far greater in the middle of See the Note at the end of this Chapter.
(i) Tho' this does not hold in the fixed Stars, becaufe of their immenfe Diftance; yet all the fuperior Planets feem their Regreffes than in the middle of their Progreffes, becaufe the Earth, in their Regreffes, comes nearer thefe Planets an entire Diameter of the Orbis Magnus.

Miles on the Earth anfwer to each Degree in the Heavens.

T H E Copernicans eafily refute thefe Arguments of the Ariftotelians. For the firft and fecond is rejected, becaufe the Motion of heavy Bodies is not towards the Center of the Univerfe, but towards the Earth, a homogeneous Body ; as is proved from the Parts of the Sun and Moon, and of the Loaditone. In the tbird both the Affumptions are falfe; For the Center is an Honourable Place; and the Earth is no ways difhonourable. The reft of the Arguments are eafily difproved by a Defcription of the Syftem; it being firft prefuppofed that tho' the Earth's Diftance from the Sun be very great, yet if compared with the Diftance of the fixed Stars, it is fo fmall, that it hath no Proportion to it ; which feems to fome a great Poftulatum in the Copernican Aftronon:y (k).
(k) To find this Variation of the Diftance of the fixed Stars (arifing from the annual Motion of the Earth, and called their annual Parallax) hath been often attempted by the Copernican Aftronomers; becaure that the annual Motion of the Earth would thereby be not only made probable, but certainly demonitrated. This, I fay, was attempted without Succefs, "till Dr Hook and Mr Flamfeed, by new invented accurate Inftruments, feemed to have found out this annual Parallax to be at leaft as much again as the double of the Sun's diurnal Parallax, viz. 47 Seconds. But Mr Molyneaux and Mr Bradley, by their late accurate Obfervations, could not, with all their

Skill, determine any fenfible Parallax at all . only they difcovered a feeming new Motion of the fixed Stars, which (allowing the progreffive Motion of Light) does in fome Meafure demonftrate the annual Motion of the Earth). There appearing therefore, after all, no fenfible Parallax in the fixed Stars, the Anti-Copernicans have fill room, on that Account, to object againft the Motion of the Earth. And the Copernicans are ftill obliged to hold, that the Orbis Magnus is but as a Point in Comparifon of the Diftance of the neareft fixed Stars; which is certainly (as our Author obferveth) a great Blot in the Copernican Aftronomy, left to be wiped out by future Ages.

IT belongs to this Place to explain this Theorem ; that the Diftances of the fixed Stars, and fuperior Planets, Mars, fupiter, and Saturn, are fo great from the Earth that it's Semidiameter hath no fenfible Proportion thereto; tho' it is not fo in the Diftance of the Moon, Mercury, and Venus: And if there is any Proportion between the Earth's Semidiameter, and the Sun's Diftance, it is fo very fmall that we are ftill not able fenfibly to difcover it (l).
TH IS Theorem is thus demonftrated. 1. The fixed Stars, and fuperior Planets appear to rife the very fame Moment in our fenfible Horizon, that they are found by Calculation to do, if we were at the Center of the Earth; therefore our Dittances from the Center (or the Earth's Semidiameter) hath no Proportion to the Diftance of the fixed Stars. 2. If we take the Meridian (or other) Altitude of a fuperior Planet, or any of the fixed Stars, with an Inftrument, we find it the fame as if we had obferved it at the Center of the Earth: Therefore the Semidiameter of the Earth is nothing in refpect of their Diftance. 3. If there were any fuch Proportion, the Diftance of two fixed Stars would appear lefs near the Horizon than at the Meridian, where they are neaier the Earth by almoft it's Semidiameter.

T HIS alfo is true in the Sun, whofe apparent Diameter is not perceived greater in the Meridian than in the Horizon.
(l) The quantity of the $\mathrm{P}_{2}-$ rallax of Mars is determined, by M. CaJini's and Flamfieed's Obfervations, to have been fcarce 30 Sec . when in Oppofition to the Sun, and alfo in his Perihelion; from whence having the true Proportions of the

Diftances of the Planets from the Sun, we have, in effect, àcquired the Parallax of the Sun itfelf, and of the relt of the Planets, and alfo their Diameters and Diftances from the Sun and the Earth; of which fee the Note at the end of this Chapter.

BUT the apparent Diameter of the Moon is found to be fomewhat enlarged in the Meridian; becaufe the is there nearer us, than when the is in the Horizon, allot a whole Semidiameter of the Earth (m).

CHAP.
(n) Here follow the $D i$. ded Means for determining the faces, Periods, Diameters, fame, as Mr. Wbifton has calGravities, and Quantities of culated them from the latent Matter, in thole of the Cole- ObServations, by Sir ISaac Newdial Bodies which have affor- ton's Rules.

1, Difances.
Mercury
Venus
The Earth
Mars

Jupiter
Saturn

is diftant from the Sun, English

\quad Miles, each ' 5280 Feet \quad| 32.000 .000 |
| :--- |
| 59.000 .000 |
| 81.000 .000 |
| 123.000 .000 |
| 424.000 .000 |
| 777.000 .000 |

2. Periods,

3: Diameters.

4. Densities,
$\left.\begin{array}{l}\text { The Moon } \\ \text { The Earth } \\ \text { The Sun } \\ \text { Jupiter } \\ \text { Saturn }\end{array}\right\}$

C H A P. VII.

Of the Subfance and Confitution of the Earth.

IN the preceding Cbapters we have confidered Four general Properties of the Earth, without Regard to it's Subftance or Conftitution : it will therefore be here proper to confider what kind of Body the Earth is, that we may not be ignorant how it's Parts cleave or are cemented together : which tho' it feem more to belong to Pbyjics ; neverthelefs becaufe it renders the Knowledge of the Earth more perfect, we fhall here briefly difcufs it ; leaving the accurate Theory thereof to Natural Pbilofopbers.

PROPOSITIONI.

To Jherv of what Simple or fimilar Bodies the Earth may confift, or be compounded.

THERE are feveral Opinions of Philofophers concerning this matter. The Peripatetics reckon four Elements in the Earth and the whole Sublunary World, fufficiently known to every on, viz. Fire, Air, Water, and Earth. Many of the Ancients, as Democritus, Leucippus, \&c. were of Opinion, that the whole World confifted of very fmall folid Particles, which only differed in Magnitude and Shape. Which Opinion is followed by feveral of the Moderns; and fome time fince, des Cartes endeavoured to account for all the Phænomena of Nature upon this Hypothefis.

THE Chymifts imagine that there are three Principles of Nature, viz. Salt, Sulpbur, and Mercury, to which fome reafonably add Caput Mortuum. But there feems to me upon a thorough Confideration of the Matter (to drop all ambiguous terms and quibbles), to be five fimple Bodies which are the firt Elements or Principles of all things, viz. Water, Oil or Sulpbur, Salt, Earth, and a fixed Spirit ; which fome call an Acid, and is perhaps like the Mercury of the Chymirts (a). For
(a) The illuftrious Sir Ifaac Newton thus explains the true Principles of Nature. "It feems ' probable to me ((ays be) that

- God in the Beginning form-- ed Matter in folid, maffy, - hard, impenetrable, move-- able Particles, of fuch Sizes - and Figures, and with fuch © other Properties, and in fuch
: Proportion to Space, as moft - conduced to the End for - which he formed them; and - that thefe primitive Particles - being folid, are incompara-- bly harder than any porous - Bodies campounded of them; - even fo very hard as never ' to wear or break in Pieces: - no ordinary Power being able it is plain that all Bodies, and Parts of the Earth, may be refolved into there five elementary Subftances. Neverthelefs I do not fuppofe them to differ fo much in their particular Effences, as in the Variety of their feveral Shapes and Magnitudes.

OF thefe Bodies, mixed after different manners, is the whole Earth compofed; from which proceeds fuch a furprifing Variety in the Nature of Bodies ; tho' they are apparently fimilar (b). But fince the more accurate Explication of thefe things belongs to Phyfics, we fhall fay no more to them here; but handle them at large in another Place.

PROPOSITION II.

The Earth is divided into dry and moift Parts, orinto Land and Water; to which fome add the Atmo ρ pbere.

THIS is the common Divifion of Geography. But then Water is taken, in a large Senfe, for all forts of Liquids and Fluids; and Land for the whole dry and confiftent Parts of the Globe: whilft

6 to divide what God himfelf

- made one in the firf Crea-
- tion. While the Particles - continue entire, they may - compofe Bodies of one and - the fame Nature and Texture - in all Ages: But fhould they - wear away, or break in Pie-- ces, the Nature of Things - depending on them would be - changed. Water and Earth - compofed of old worn Parti-

6 cles, and Fragments of Parti-

- cles, would not be of the fame
- Nature and Texture now,
- with Water and Earth com© pofed of entire Particles in
' the Beginning. And there-- fore, that Nature may be - lafting, the Changes of cor-- poreal things are to be placed - only in the various Separa-- tions, and new Affociations - and Motions of thele perma-- nent Particles; compound Bo-- dies being apt to break, not - in the midft of folid Particles, - but where thofe Particles are - laid together, and only touch 4 in a few Points.' Newton's Optics, Pag. 375.
(b) See the Notes below on Prop. 6 and 7 of this Cbap. tures. To the Earth belong, i. Sand, Gravel, Clay, and Mineral Earth; alfo Chalk, Minium, Oker, Terra Sigillata, Earth of Samos, Bole-Armesiac, and feveral other Kinds of Earth. 2. Stones of various forts. 3. Metals; as Gold, Silver, Copper, Tin, Lead, Mercury or Quick-filver, $\mathcal{E}^{3} c$. 4. Sulphur, Salt, Nitre, Allum, Bitumen, Vitriol, Antimony, छc. 5. Herbs, Animals, Ecc.

TO the Water belong, I. The Ocean and Seas. 2. Rivers and frefh Waters. 3. Lakes and Marfhes. 4. MineralWaters, as Hot Batbs, Spaw Waters, \&cc.

THE Atmofphere is a fubtile Body which furrounds the whole Globe of the Earth, and includes the Air, Clouds, and Rain, ξ° c. So that the Earth is beft divided into thefe three Parts.

PROPOSITION III.

To explain bow the Earth and Water cleave one to anotber; and confitute tbe Terraqueous Globe.

T HE Earth, that is the dry Part of the Globe, is not terminated by an even and fmooth Surface; but is here and there hollowed into Cavities, and in other Places elevated into Protuberances. In the Cavities found all over the Earth is contained the Ocean or Sea; fo that this Part of the, fuperficies of the Earth is covered with Water, and the other Part is raifed and appeareth above the Waters. Thefe Cavities are not depreffed into an equal hollownefs, but are in fome Places rugged and rocky; and in others funk down into Gulphs and WhirlPools. Alfo thofe Places of the Earth which are raifed above the Waters, have in the middle of them, as it were, certain Navels or Eminences ; and fome Parts are either raifed or depreffed more than others. Hence the Water furrounding the whole
whole Globe is hindred from covering the higher Parts which appear abbove the Surface of the Ocean; and are called-Hlands: whereof fome are great and others are fmall.

- BESIDES that continued Cavily or Cbanel in the Surface of the Earth, there are alfo within it's Bowels innumerable Openings, Receffes, Fiffures, Chafms, Mazes, Swallows, Water Paffages, and vaft Receptacles; fome of which are filled with falt Water, viz. fuch as are joined by fubterraneous Paffages to the Main Ocean; others with frefh Water, Rivers and Brooks; in fome alfo are fulphureous Vapours, and fmoaking Subftances. So that Seneca feems to be in the right when he fays, Tbat be trufts too mucb to bis Sigbt, who does not believe that there is a large Quantity of Sea in the bidden Recefles of the Eartb. Nor do I perceive why there fhould not be much Sea Water received by thefe fubterraneous Swallows; and formed into Bays by Banks or Bounds. And from the following Obfervations we cannot doubt, that there are a great many Cavities in the Bowels of the Earth. For feveral fubterraneous Rivers are found in Places where the Earth is dug to a confiderable Depth; as is common in Mines. 2. The Depth of the Sea is in fome Places unfathomable, 3. Thete are in feveral Places, Caverns difcovered nea the Surface of the Earth. Thus in the Weft part of the Ifland of Hifpaniola, there is a Mountain of a valt Height all hollowed within, into féveral Dens and Openings, in which Rivers rufh precipitantly with fuch a violent Torrent and Noife of Waters, that they may be heard at five Miles diftance. 4. Several Whirl-Pools are found in the Sea, and called in the Dutch Language Maelfroom. 5. Earthquakes alfo fhew that there are fuch fubterraneous Caverns. 6. Several Rivers hide themfelves under the Earth, as the Niger, Tigris, E'c. 7. Brackifh Fountains

Fountains are obferved in feveral Places, moft of which certainly flow from the Sea. 8. In many Places the Ground trembles when People walk upon it, as at the Abby of S. Omer in Flanders; and in the Province of Brabant upon Peel Mari/b.

COROLLART

Hence it is evident, that the Opinion of thofe old Philofophers, who maintained that the Earth at firf floated upon the Waters, is falfe; for by this Means there would be no Chanels in the Sea, but it would be every where of an immenfe Depth. Some indeed of the Antients (efpecially Democritus) are faid to have been of the following Opinion, viz. that the Waters were formerly mixed with the Earth; and that the whole Mafs being perfectly fpherical, was foft and of an indifferent Confiftence betwixt wet and dry: But afterwards when the Particles of Water were gathered into one Body, according to the natural Property obferved in Water, the earthly Particles, being feparated from the watery, came together and were curdled into Earth and wrought into Chanels by the Water in feveral Places. The fame Hypothefis is embraced by many modern Chriftian Philofophers, who think thefe Words of Mofes (or rather of GOD delivered to us by Mofes) Let the Waters be gatbered togetber into one Place, and let the dry Land appear, ought to be thus undertood. But the Fathers of the Primitive Church thought otherwife about this ; for they judged that the Waters were feparated from the earthy Particles [before the Creation] and covered the Face of the whole Earth; and fo occupied their natural Place ; and then miraculoufly receded, and uncovered the Earth by the Power of thefe words of Febovab; and that to this day they are hindred and reftrained, by the efpecial Providence ing the Face of the whole Earth as before ; fo that the prefent Conititution of the Earth and Sea is by them accounted a perfect Miracle. But that there is no great Occafion to think it fo much a Miracle we fhall prove in Chap. xiii. where we fhall fhew, that the Inundation of the Waters, or Ocean, upon the adjacent Land, is hindred by the Altitude and Confiftence of the Earth, which if removed by fome certain Caufes, whereof there are many, the Ocean will foon overflow the dry Land and cover it : whence there is manifertly, no need of a Miracle in the matter. Neither does the beforementioned Opinion of the Antients want it's Defects; for if the Earth and Water had been once mixed into one Mafs ; why did not the earthly Particles rather fubfide, and the Waters, being of lefs Gravity, cover the whole Earth ? This they are forced to afcribe to a forturitous Motion and Conjunction of the watery and earthly Particles. Thefe things are faid, by the way, to gratifie fome that earnetly enquire into fuch matters; tho they do not fo properly belong to Geography ; which hath no Regard to the Opinions of the Ancients, nor need fly to Miracles in explaining the Properties of the Earth (c).

> PROPOSITION IV.

The Superfcies of the Eartb is continued, but not that of the Waters.

THE Superficies of that Part of the Earth which is raifed above the Waters, is continued to the Superficies of the Chanel of the Sea, and that again to other elevated Parts of the Earth. Alfo
(c) Sce Dr Woodvard d' EJay. tovards a Nat, Hijf. oftbe Eartb, \&ce. the are fome Lakes whofe Superficies are not joined with that of the Ocean, as the Lake Parime, and the Cafpian Sea, $\mathfrak{E c}$.

PROPOSITIONV.

The Confitution of the Earth, far within the Surface (wbich is our Habitation) towards the Center, is uncertain.

S OME think that Water taketh up the loweft Place about the Center; but it is more likely that dry Earth fhould occupy that Place (d). Gilbert
(d) The learned and fagacious Dr Halley, to account for the Changes of the Needle's Variation, hath fhewed a Poffibility that the exterior Patts of the terraqueous Globe are formed inwardly like the concave Surface of a petrified Shell; and the internal as a Nucleus, or inner Globe, included within ours, with a fluid Medium between, which mores along with it, as having the fame common Center, without fenfibly approaching one Side or another, like the Globe of Saturn environed with his Ring. 'And ' tho' (Jays be) thefe included

- Globes can be of very little
- Service to the Inhabitants - of this outward World, nor - can the Sun be of Service to
- them: yet fince we fee all
- Parts of the Cteation abound
- with animate Beings, why
- Chould we think it ftrange
- that the prodigious Mafs of
- Matter, whereof this Globe - doth confift, fhould be capable
- of fome other Inprovements,
- than barely to ferve to fup-- port it's Surface ? Why may - we not racher fuppofe, that - the exceeding fmall quantity - of Matter in refpect of the - fluid ether, is fo difpofed - by the Almighty Wifdom, as - to yield as great a Surface - for the Uie of living Crea-- tures, as can confift with the
- Conveniency and Security of
' the whole.
- And tho' without Light ' there can be no living, yet - there are many Ways of pro-- ducing Light which we are - wholly ignorant of: The Me-- dium itfelf may be always lus - minous after the Manner of - our Ignes Fatui: The con-
- cave Arches may in feveral - Places fine with fuch a Sub-
was of Opinion that the Body of the Earth within is nothing but a very hard Loadftone ; and that thefe exteriour Parts towards the Surface, which are penetrated into by digging, and on which Herbs grow and we live, are but as it were the Bark and Cruft of the Earth, and the Seat of perpetual Generation and Corruption. The Opinion of des Cartes is not much different from this; for he believed there were three Strata in the Body of the Earth of divers Confiftences. The firft and iinermoft poffeffing the Center, the fecond of a denfe and opaque Nature, confifting of the minuteft Particles; the third (being replete with Men and Animals) he fuppofes to be compounded of Particles not fticking fo clofe together.

NEVERTHELESS, for want of Obfervation, we cannot affirm any Thing for Certainty in this Matter ; and tho' it be true that in feveral fubterraneous Places, there is a glowing Heat, and that Smoke and fulphureous Fumes are exhaled from feveral hot Baths: and alfo tho' Thurn. beufer affirms, that he found by Experience that the nearer they digged to the Center of the Earth, there was the lefs Water in Mines; yet we are ftill in a Doubt, and cannot pofitively depend upon his particular Obfervation.

6 flance as invefts the Surface

- of the Sun; nor can we, with-

6 out a Boldnefs unbecoming a
' Philofopher, adventure to af-

- fert the Impoffibility of pe-
- culiar Luminarics below, of

6 which we have no fort of - Idea.

- Thus have I fhewn a Pof-
- fibility of a much more ample - Creation than has hitherto
- been; and a Notion not fo - much as flarted in the World - before.'

Thus far Dr Halley. How he accounts for the Variation of the Needle from this Hypothefis; See the Notes upon Cbap. 38. Prop. 4- of the Comparative Part, or Pbilof. Tranfact. No 148. Pag. 208. and No 195. Pag. 564.

PROPOSITION VI.

The Confifence or Coberence of the Particles of the Earth is from Salt.

THE artificial Separation of the Particles of Bodies demonftrate, that in the Compofition of the whole there is a certain kind of Salt which is more abundant in harder Bodies, as in Metals, Stones, $\xi^{\circ} c$. (a few oily Subftances only excepted) (e). And that all folid Bodies are concreted by Salt, is manifeft from the artificial Petrefaction of thofe that are foft, to any Degree of Hardnefs by it.
(e) Tho' moft forts of Bodies are replete with faline and vitriolic Particles, fuch as may in fome Means contribute to their Coagulation and Confolidation; yet the primary and naturally indivifible Corpufcles, of which the Particles of all Bodies are compofed, are not connected by falt or hooked Atoms, as fome imagine; nor glewed together by Reft, which is an occult Quality or nothing, nor ftick together by confpiring Motions, but rather cohere and are united by mutual Attraction. So that the fmalleft Particles of Matter may cobere by the frongeft'Attractions, and compofe bigger Particles of weaker Virtue; and many of thefe may cobere, and compofe bigger Particles zobofe Virtue is fill weaker. See Newton's Optics, Pag. 370.

Hence Particles of Bodies which touch one anotherin large Superficies's, by a ftrong mutual

Attraction of their Parts, cortpofe a Body very hard; and if thefe Particles are not fo ftrongly attracted or entangled with each other, the Body will be brittle; if they touch one another in lefs Superficies, the Body is not fo hard, but yet may be more folid; if they only approach each other, without nlipping one under another, the Body is Elafic, and fprings to it's former Figure ; if they flip under each other the Body is Soft, and cafily yields to the Stroke of the Hammer; if they fcarce touch one another the Body is crumbling, or fuch whofe Parts may be eafily feparated; if they are fmall, round, nlippery, and eafily agitated by Heat, the Body is fuid; if thefe Particles are of an unequal Superficies, and hooked or entangled one with another, then is the Body flexile or pliant, \&c. See Dr Clarke's Notes upon Robault's Pbyjus.

So that if Salt be feparated from Bodies, their Particles will no longer be cemented; but they will become Powder, which cannot be brought to a Coherence without the Admixtion of faline Particles.

PROPOSITION VII.

Various kinds of Bodies are Several Ways mixed togetber in the Globe of the Earth.

I N Mines there are found Particles of Gold, Silver, Lead, $\xi^{\circ} c$. not gathered into a Mafs and feparate from others; but fometimes mixed among themfelves, and fometimes with ufelefs Earth, in fuch very fmall Particles that the beft Judges in Metals cannot at firft Sight difcover what fort of Mineral is contained in fome Metalline Eartbs (f). Alfo in the Fields, Sand is fometimes

Abstract

(f) The indefatigable Dr Woodzuard, in his Eflay towards a Natural Hifory of the Earth, reafonably fuppofes all thefe Commixtures of the Particles of Bodies in the Strata of the Earth, to proceed from thofe ftrange Alterations that were every where made in the Terreftrial Globe at the Deluge, when the whole Globe was diffolved, and the Particles of Stone, Marble, and all other folid Foffils diffevered, taken up into the Water, and there fuftained together with Sea Shells, and other animal and vegetable Bodies: that at length all thefe fubfided from the Water, according to the Nature of their Gravity ; the heavief Bodies firk, then thofe that were V OL. I.

lighter; but all that had the fame Degree of Gravity fettled down at the fame Time; fo that thofe Shells, or other Bodies, that were of the fame fpecific Gravity with Clay, Chalk, Sand, E $\varepsilon^{\circ} c$. funk down together with them, and fo were inclofed in the Strata of Chalk, Clay, Sand, or Stone, which their Particles formed; that at the general Subfidence, Metals and Minerals, as well thofe which were amaffed into Lumps as thofe which continued afunder, and in fingle Corpufcles, funk down to the Bottom along with Sand, Coal, Marble, Esc. and fo were lodged with the Strata which the Sand, Eoc. conflituted. That all the metallic and mineral Matter which H is times with Salt, $\mathcal{E}^{2} c$. Not long fince at Amferdam, when the Earth was digged up to the Depth of two hundred thirty two Feet to make a Well, thefe kinds of Earth were gradually difcovered. Firft feven Foot of Garden Mould, then nine Foot of black combuftible Earth, which is called Peat, (not like that they properly call Dutch Turf) then nine Foot of foft Clay, then eight Foot of Sand and four of common Earth, then ten Foot of Clay, and again four of common Earth, next that ten Foot of fuch Sand as the Foundations of the Houfes in Amferdam are laid in, then two Foot of Clay, next four Foot of white Gravel, then five Foot of dry Earth, and one Foot of Mud, again fourteen Foot of Sand, then three Foot of fandy Clay or Mire, afterwards five Foot of Sand mixed with Clay, and next four Foot of Sand mixed with little Sea-Shells, then there was a Stratum of Clay one hundred and two Foot deep, and laftly thirty one Foot of Gravel, where the Shaft was finifhed.
-is inow found in the Fiffures, -or perpendicular Intervals of the .Strata, was originally lodged in fingle Particles among the Sand, E'c. having been detached and drawn thence by little and little by the Water, which continually pervades the Strata; and that Trees, which are found in great Plenty in Moffes, Fens, or Bogs, were depofited thereby the Deluge ; fo that the prefent Earth was formed out of this promifcuous mixed Mats of Sand, Earth, Shells, and Metals, and of broken and difloca-
ted Strata, fome elevated and others depreffed, by which Means all the Inequalities of the Globe, Fiffures, Grotto's, Mountains, Vallies, Illands, the Chanel of the Sea, and all others, were formed, and that the whole Terraqueous Globe (with all it's Materials) was, at the Time of the Deluge, put nearly into the Condition that we at this Day behold it. See Woodward's Eflay, or PbiloSopbical Tranfacions $\mathrm{N}^{\circ} 21 \%$. p. 115 .

PROPOSITION VIII.

The Cavities of the Earth, and tbe external and in= ternal Dippofition, or Situation of il's Parts; are not perpetually the fame, but different at different qimes.

THE Sea not only makes many Devaftations and Changes in the Parts of the Earth, by fome of it's Paffages being ftopped, and others more opened; but alfo that fpirituous and fulphureous. Subftance which here and there lies hid in the interior Parts, when it begins to heat and evaporate, impetuoufly thakes the exterior Parts of the Earth, raifing them up, as is ufual in Earthquakes. And it is probable the like Eructations may often happen in the more interior Parts of the Earth; which for the moft part we have no Notion of.

W E fhall treat of the mutual Changes of Land and Water in Chapter 18. hereafter.

The Terraqueous Globe is divided into
Eartb whofe $\{$ covered with Water, or raifed aSurface is \quad bove the Waters; and into Water.

THE Superficies of that Part of the Earth which appeareth above the Waters, is, by the Interflux of the Sea thus divided.
I. I N T O large Continents, or great Iflands, which we fuppofe to be four.

1. The
2. The Old Europe, and is Pacific and World which Afia and bounded $\left\{\begin{array}{l}\text { Indian Ocean. }\end{array}\right.$ South by the SoutbernOcean.
Weft by the Atlantic, or Weffern Ocean.
[North by Davis's Streights. Eaft by the Atlantic Ocean. South by the Streights. of Magellan. Weft by the Pacific Ocean.

mland is furrounded on every Side with Seas and Streights.
3. THE Antardic Continent, or Terra Aufralis Incognita.
II. I N T O Peninfula's, or Cberfonefuffes, which are Parts of thefe Continents.

Of which fome Africa.
are of a round Fi- [North and South America] gure, whofe Lon- Peloponnefus, or the Morea in gitude and Lati- Greece, Taurica Cberfonefus or tude are almoft e- Crim-Tartary. qual, as - Cambaya or Guzarat.

Others

Снар. 7. of Univerfal Geography.
 IOI

C Cberfonefa d'or, or Malacca in India. Cimbrica, or futland, contiguous to Holfein. long of which there are many, as - Corea contiguous to Tartary. * California, rucatan, the Cberfonefus of Romania.
Ionia [as Smyrna]Cnidus and Myndus.
$*$
[Italy, Greece, and proper Acbaia. Spain, Afia minor, and Arabia.
Others which are almoft like Peninfula's, which are Norway, with Sweden, and Lapland.
Patagon near the Streights of Magellan and Nerw Guinea. Indoftan, Cocbincbina, New Britain, Monopatapa, \&c.
III. IN TO Inands of which there are three Claffes, viz.

	Britain	Luconia]
	Britain	Madagajcar
ven] very ${ }_{\text {If }}$	* fapan	Borneo
ven] very	Iceland	* Nova Zembla
large ones	James Inland]	Newfoundland]
	Sumatra	California.

2. [Eleven] $\left.\begin{array}{l|l|l}\text { Sicily } & \begin{array}{l}\text { Fava } \\ \text { of a middle } \\ \text { Size }\end{array} & \begin{array}{l}\text { Friefland } \\ \text { Ireland } \\ \text { Hipaniola } \\ \text { Cuba }\end{array}\end{array} \begin{array}{l}\text { Celebes } \\ \text { Candia } \\ \text { Sardinia }\end{array}\right)$ Mindanao.
3. [Nine] $\left\{\begin{array}{l}\text { Gilolo, Amboina, qimor, among the } \\ \text { Indians Inands } \\ \text { Corfica, Majorca, Cyprus, Negropont, } \\ \text { in the Mediterranean } \\ \text { Zealand in Denmark, and Famaica in } \\ \text { the Gulf of Mexico. }\end{array}\right.$

* Ses the Notes upon tbefe Words in the next Cbapter.

Very many fmall ones, of which we reckon
r. The nof remarkable Solitary ones, are Rbodes, Malta, Lemnos, St Helena, St Thomas, Madera, \&c.
2. The noted Clufters of Inlands which lie near one another in great Numbers are

The Canary Iflands
The Azores
Cape Verd Inlands
The Antillis
The Maldivia Inand
The Comoro Inands

The Molucca and Bandana Inands.
The Pbilippine Inands
The Ladrone Inlands
Thofe in the Agean Sea
The Britannic Inands
The Inands of Solomon.

> IV. Iftbmus's or narrow Necks of Land.

That of Suez, between Africa and Afia.
That of Corinth, joining the Morea to Acbaia.
That of Panama, in America, longer than any of the reft.
That between Futland and Holfein. That joining Malacca to India.

SECT.

S E C T. III.

In which the Conffitution of the Earth, or the dry Part of the Terraqueous Globe, is explained, in four Cbapters.

> C H A P. VIII.

Of the natural Divifion of the Earth into Parts by the circumfluent Ocean.

WH A T we fhall exhibit in this Chapter, concerning the Divifion of the Earth, and that in Chap. xv. about the Diftribution of the Sea, will be of great ufe to young Students, for underftanding, and remembring the Bounds and Situation of the feveral Countries on the Earth's Superficies: wherefore thefe two Chapters ought to be read throughout with great Attention, and compared with Maps, or the artificial terreftrial Globe. We faid before, in the preceding Chapter, that the Terraqueous Globe, as to it's conitituent Parts, may be beft divided into a Body of a firm Confiftence as Earth, and a fluid matter as Water ; to which may be added the Atmofphere as a circumambient Fluid or Covering.

I N the firf Place, we fhall treat of the Earth, or that Part of the Globe which hath Confiftence,

PROPOSITION I.

Part of the Earth is covered with Water, and Part. of it is raijed above the Superficies of the Water, and furrounded thereby.

T HE Truth of this Propofition is manifeft from Experience. Neverthelefs there are fome Places which are now and then covered with Water, and at other Times dry and confpicuous, as the Inlands near Norway, Scotland, and other Countries, to which may be added Sand-beds or Sbelves, and Seafhores; but becaufe thefe are fo fmall in comparifon of the reft, we fhall take no notice of them at prefent. Nor fhall we trouble our felves here with difputing whether the greater Part of the Superficies of the Globe be taken up by Land or Water, but leave it to be difcuffed in Chap. xviii. and confider here only the apparent Parts of the Earth which we call IJands.

PROPOSITION II.

The Parts of the Earth, which are raifed above the Waters, are not always joined togetber by one continued Superficies, but often Separated one from anotber, and formed into Iflands by the Interflux of the Sea.

THESE may be diftributed into five Claffes, viz. Plats of Land or Inands, that are great, and Continents that are greateft; fome fmall, and others that are fmalleft; and laftly fome of a middle Size.

W E fhall treat of the Origin, and Caufe of thefe Inands in the proper Place, Chap. xviii,

THO' all the feparate and apparent Parts of the Earth ought to be called Iflands, becaufe an Ifland is nothing but a Part of the dry Land every where environed with Water; yet, in the common Way of fpeaking, this Word is feldom ufed to exprefs thefe large Tracts of Land whofe Boundaries by the main Ocean, (by reafon of their vaft Extent,) are not fo perceptible. Such as thofe are frequently called the Terra firma, or great Continents, which peculiar name they ought to be diftinguifhed by on account of their Magnitude, in refpect of the reft of the Inlands, which are very fmall in comparifon of them. Therefore we fhall, in what follows, call them the Terra firma or great Continents. But the word Continent is frequently ufed to exprefs feveral Parts of the Terra firma as well as the whole. And fometimes it is taken ftrictly for a Part of the Earth, on no fide contiguous to the Sea: Or in a large Senfe for a Country bounded by the Sea on one fide, and on the other joined to a large Tract of the Terra firma. It is alfo often taken in general for a Part of the Earth joined to another, whether by a large or a narrow Tract of Land. In thefe Senfes the Word Continent differs from that in which it is frequently ufed to exprefs large Iflands.

PROPOSITION III.

> Thefe large Tracts of Land, Continents or Terra firma , (which you will pleafe to call them) are accounted four in Number.

1. T HE old World. 2. The new World, or America. 3. The Nortbern Continent, or Terra Arctica. 4. The Soutbern Continent, or Terra Auftralis.
2. THE Old World (being the moft famous of the four, which we inhabit, and which was only known to the Ancients) is divided, by the Sea into two Parts, which are only joined one to another by a fmall neck of Land, whereof one is Africa; while Europe and Afia jointly make the other. It is thus environed by the Ocean.

O N the North by the Icy or Nortb Sea, the Wbite Sea, and the Tartaric Ocean.

ON the Eaft by the Great South Sea and $P a$ cific Ocean.

ON the South by the Indian Sea, the Soutbern and Retbiopic Ocean.

O N the Weft by the Atlantic Sea.
THE aforefaid Divifion of this Continent is made by the Mediterranean, and Arabian Gulph or Red Sea. The Diftance of thefe two Bays, or the Breadth of the intervening Tract of Land being about 40 German Miles; fo that Africa would have been an entire Terra firma, and numbred among the Continents, but for this fmall Iftbmus.

THE Old World is not far diftant from America in the Eaft about the [fuppofed] Streights of Anian [or Uries,] if there be fuch; but the leaft [known] Diftance of Europe from America is between Norway and Nerefoundland.

THE Diftance between the Old World, and the Arctic Continent is fhorteft about the [Icy Sea]; alfo the Old World is not far diftant from the South Continent about Nerw Guinea.
2. THE New World, or America, is thus encompaffed by the Ocean.

ON the North we are in Doubt whether there be Sea or Land beyond the Streigbts of Davis.

ON the Eaft it is bounded by the Allantic Ocean.

O N the South by the Magellanic Streights.

ON the Went by the Pacific Ocean.
THE New World is alfo nearly divided into two Iflands at Panama and Nombre de Dios, where the Atlantic and Pacific Ocean are hindred from meeting by a very fmall Ridge of Land.
$A M E R I C A$ is not far diftant from the Old World about the Streights of Anian [or the Sea of Fapan]; and not far again from the Arctic Continent at Davis's Streigbts, and feparated from the South Continent only by the Streights [of la Maire] and the Magellanic Sea.

THE ArEtic and Antarctic Continents are every where environed with Sea, the former [as is fuppofed] with the Nortb Sea at the Streights of Davis, [Uries or] Anian, [and the Icy Sea]; the later with the Soutb Sea, Pacific and Indian Ocean, and the Streights [of la Maire].
3. THE ArEtic Continent is not far diftant from the Old World [at the Icy Sea], nor from America at Davis's Streights; but it is feparated from the South Continent by a vaft Interval.
4. THE Antarglic Continent is not far removed from the old World at the Peninfula of New Guinea, and feparated from America by the Streights of Ma gellan [and la Maire].

B UT we have_not been able to find for certain whether the Old World, America, and the Nortbern Continent, be each of them encompaffed with Sea, and feparated one from another ; tho' it be very probable that they are, by reafon of the feveral Bays and Entrances of Streights that run in from the Ocean to the Landward. Only the Soutbern Continent hath been actually failed round, and therefore is certainly known to be environed on all fides with Sea, and therefore feparated from the reft. But this has not yet been done by the other
other Parts; for men have not failed about the Old World much further then Streigbts of Waigats, tho' the whole Weftern, Southern, and Oriental Shores have been vifited, and there is but a fmall Part of the North [Eaft] Coaft that remains to be difcovered (a). America alfo hath been failed round
(a) All the Attempts made by the Europeans to difcover a Nortb-Eaf-Paflage to the Oriental Countries have been hitherto unfucceffful. The Reafon was formerly thought in a great meafure owing to the Difcoverers not fteering their Courfe near enough the North Pole; being either milled by an Opinion, that that Part of the Sca which lies betwixt Nova Zembla and the Continent of Tartary had been paffable; or that they might have coafted it along the North of Nova Zembla and Tartary, till they had entered the Streights of Yeffo, which could never be effected by Reafon that moft of thefe northern Coafts are frozen up many Leagues from the Shore, efpecially in the Winter, tho' in the open Sea it is not fo, even under the Pole itielf; unlets, for Example, upon the Approach of the Summer when the Froft breaketh, and the Ice, whichwas congealed near 40 or 50 Leagues from the Shore, goes off from the Land and floats up and down in the Sea; whereby feveral have been forced to quit their Defign and ftand back for their own Country. See Pbilof. Tranf. N°. 118 8. Pag. 417 . Big with this laft notion our Coun-try-man Capt. Jobn Wood, the
lateft Adventurer who attempted the North-Eaft Paffage, in the year 1676, fteered directly NE from the North Cape of Norzoay, in order to fall in between Greenland and Nova Zembla; but he could find no Sea or Inlet between thofe Countries ; on the contrary, he obferved the Ice to adhere immovably to the Coaft of Nova Zembla, and that all the Englibb and Dutcb Pilots had been miftaken in their Conjectures of an open Sea thereabouts, for he could pars no further this Way than to the 76 Degr. of Latitude, on account of the Ice, which muft have then taken up fome Centuries to thaw. He concludes therefore that Greenland and Nova Zembla muft be the fame Continent, by Reafon there was no Current found there, but only a fmall Tide which rifes about eight Foot, and ebbs back again. And ifit fhould be admitted, to the contrary, that the Continent of Afia and America are feparated by the Ocean, yet we may now reft fatisfied that the Difficulties to be met with in a North-Eaf Paffage are not to be furmounted, and poflibly will never be attempted again. Salmon's PreSent State of all Nations. Vol. 6. Pag. 330.

Снар. 8. of Univerfal Geography. 109 round except a Part of the Northern Shores, on account of the Uncertainty of the Streights and other Difficulties. This therefore is the Situation of the four Continents.

PROPOSITION IV.

To enumerate the great Iflands difperfed over the Surface of the Terraqueous Globe : viz.

1. $B R I \tau A I N$, comprehending England and Scotland, is fuppofed to be the greateft of thofe commonly called Inlands (thofe in the preceding Propofition excepted). It lies betwixt Europe and America, near France and Flanders. It is furrounded by the Allantic Ocean, and it's Form is oblong.
2. $7 A P A N$, in Maps and Globes is reprefented of a lefs Magnitude than it ought to be; for they that have been there affirm it to be larger, or at leaft no lefs, than Britain (b). It lies eaftward of Afia not far from Cbina. It is furrounded by the Pacific Ocean, and is of a curve Figure.
3. LUCONI A, which is alfo called, from it's Metropolis, Manilba, is the Principal of the Pbilip-
[I forbear to enlarge upon an Account given us lately, as advices from Mufooy, of an Expedition entered upon, under the Command of one Capt. Berring, to find out this Nortb. EaftPafage, whofe Voyage is now faid to be Printing at Mofcow ; in which he affirms, that there is a free and open Sea to about the North-Eaft Point of Tartary, and believes it to be likewife open to the Sea of Cbina, or, as fome Geographers call it, the Sea of Japan.]
(b) Whether Gapan be an Mand, or annesed to the Land
of \mathcal{Y} e $/ 0$, the Inhabitants of both Countries doubt; becaufe vaft and inacceffable Mountains interpofe which hinder the Communication. Neither doth it as yet clearly appear, whether this Land of Feffo is a Part of Tartary, or whether it is by an Arm of the Sea divided from it. The Cbinefe affirm that Tartary runs 300 Cbina Leagues beyond their famous Wall; fo that if we follow them the Country of 7 efo, and alfo Japan, may feem not to be Illands but annexed to Tartary. Pbilof. Tranf. No 118. on the Borders of Afia. Some will have it to be larger than Britain; but they who have been there fay it is fomething lefs. It is encompaffed by the [great Soutb Sea,] and is of a curved oblong Figure, with many Inlets and Windings.
4. $M A D A G A S C A R$, or the Inland of St Laurence, lies on the eaftern Shrore of Africa, not far from the Streights of [Babelmandel or] the Red Sea. It is environed by the Indian Ocean (all the Sea between Africa and India being now called by that Name). It's Form is oblong.
5. SUMATRA, thought by fome Geographers to be the Taprobana of the Ancients, lies near the Borders of Afia among the [Sunda Iflands] not far from the Peninfula of Malacca (c). It ftretches to a great Length, and is furrounded by the Indian Ocean.
6. $B O R N E O$ is fituated in the Indian Sea not far from Sumatra: in's Form is almoft round. There is a great Difference among Authors about it's Extent ; fome make it's Circumference to be about 2100 Miles, and will have it to be the greateft among the Indian Inands: others but about 300.
7. ICELAND, Part of which is fituated in the Temperate, and Part in the Frigid Zone, betwixt Groenland, and Norway, is encompaffed by the Nortbern Ocean, and it's Form is oblong.
8. NEWFOUNDLAND is an Ifland adjacent to Canada, in North America. It is fomething larger than it is fhewed in our common Maps. It is environed by the Nortbern Ocean, and receiveth the Sea in at a great many Creeks.
(c) Not Sumatra but Ceylon is thought, by all modern Geographers, to be the Tafrobane of the Ancients. And it is till
called by the Indians Tenerafin, i. e. A Land of Deligbts, as it was reprefented by the Ancients. Nortbern Qcean near the Arctic Continent, between Davis's and HudJon's Streights. I have not found it in any Map before that of Viccherus, printed in 1594. It is a large Ifland of an oval Figure.
9. NOVA Zembla is fituated between the ArIiic Continent and the Land of the Samoieds and [Ofiacs]. It is bounded on the North by the $I c y$ and $[M u f c o-$ vian] Sea, and feparated from Europe at the Land of the Samoieds by the Streights of Waygats (d). It's Form is oval.
10. CALIFORNI A may be added to thefe if it be an Illand, and not a Part of America (e). The Dutcb found in a Spanifs Ship a large Geograpbical Map, in which California was reprefented as an Ifand not contiguous to America, but furrounded with the Sea.
(d) Mr Witfen tells us, in Pbilof. Tranf. No 101. Pag. 3. "That he had received out of "Mufcovy, a new Map of Nova " Zembla and Waygats, as it " had been difcovered by the " exprefs Order of the Czar ; " by which it appears, that "Nova Zembla is not an LOand, " as hitherto believed, and that " the Mare Glaciale is not a "Sea but a Bay". Tho' Mr Witfen himfelf feems to be of a contrary Opinion afterwards, in another Tranfaction No 193. Pag. 494, where he fays. "I "formerly thought Nova "Zembla a Continent; but I " have fince been better in-a- formed. Therefore fince no
"Ships have failed beyond it, " it may be both joined to the "Continent, and extended to s" the Pole, for ought we can difcover".
(e) Gemelli tells us, that a Provincial at Manilha, in tbe year 1697. "Thought Cali"fornia a Part of the Conti" nent; becaufe fome Fathers " of the Society having gone " to the Mouth of the Streights " which it 60 Leagues over, " and run many Leagues up it, " found at laft that there was " but very little Water in the "Clanel, and could go no " further; by which he guer" fed, that long Bay had no "Communication with the " Northern Sea to make Ca"lifornia an Iland". Collect. Voyages and Travels. Vol. 4. Pag. 420. Father EuJebius Francis Kino is alfo of the fame Opinion, as is underftood from his Map communicated to the Rayal Society, Anno 1708. Neverthelefs it is generally reprefented in our Maps as an Hland. PROPO.
PROPOSITION V.

To enumerate the Iflands of a middle Size fcattered over the Surface of the Globe: viz.

1. $7 A V A$, one of the Sunda Iflands betwixt Afia and New Holland, is replenifhed with every Thing fit for human Life, and is a perfect earthly Paradife. It is furrounded by the India Ocean; and it's Form is oblong.
2. $C U B A$, one of the Antilles, betwixt Florida and Nerw Spain, is encompaffed by the Atlantic Ocean at the Entrance into the Gulpb of Mexico. It's Form is oblong.
3. HISP ANIOL A lies to the South of Cuba, and is almoft as large. It is furrounded by the North, or Atlantic, Sea, where it flows into the Gulph of Mexico. It is of an oval Figure, with feveral Notches in it.
4. IREL AND lieth near Britain, towards America. It is environed by the Nortb Sea; and it's Form is oval.
5. CANDIA in the Mediterranean, near Greece, is of an oblong Figure.
6. SICILr lies in the Mediterranean, near Italy. It's Form is [fomewbat Triangular.]
7. CETLON, near the furtheft Promontory of Cormandel in India; is furrounded by the Indian Ocean, and is of a round Figure. Barrius will have this to be the Taprobana of the Ancients.
8. MIND ANAO, one of the Pbilippine IJands in the Pacific Ocean, is of an oval Figure.
9. SARDIN1A lies in the Mediterranean. It's Form is oblong.
10. CELEBES, an Inand not far from Borneo, is encompaffed by the Indian Occan; and is of an oblong Figure.
i i. FRIESLAND, not far from Iceland, may alfo be referred to this Clafs.
PROPOSITION VI.

Abstract

To enumerate tbe fmall IJands in tbe Globe's Superficies: viz.

1. GILOLO, one of the [Molucca Iflands] is furrounded with the [great Soulb-Sea] and fhaped like a Horfe-Shoe.
2. AMBOINA, not far from Gilolo in the fame Ocean; is of an oblong Figure.
3. TIMOR, an Inand adjoining to [Arnbems Land in] the Continent ; it is one of the [Sunda Iflands] and it's Form is round.
4. $\mathcal{F} A M A I C A$, one of the [Antilles] in the Gulph of Mexico, is of an oblong Figure.
5. ZELAND, an Inand in Denmark between Futland and Gotland. It is furrounded by the Nortb-Sea, as it flows into the Baltic, and is of a round Figure.
6. NEGROPONT, near Greece in the [Arcbipelago], is of an oblong Figure.
7. MAYORCA, in the Mediterranean, near Spain, [is of a quadrangular Figure].
8. CORSICA, [near Sardinia] in the Mediterranean, [is of an oval Figure].
9. CTPRUS, not far from the Ieffer Afia in the Mediterranean, is alfo of an oval Figure.
10. ISABELLA, one of Solomon's Inlands, in the Pacific Ocean.
T.HERE are feveral other Iflands that might be referred to this Clafs, but we fhall confider them among the following.
VOL. I. I . I I

PROPOSITION VII.

There are alnofs an innumerable Multitude of very little Iflands difperfed over the Surface of the Globe; among wobich thefe following deferve a particular Confideration. 1. The celebrated Solitary ones. 2. Tbooe that are collected into Clufters, and for tbeir Affinity to one another, included under one Name.

T HE moft noted Solitary Iflands are, Thofe in the Mediterranean; viz. Rbodes, Malta, Yvica, Minorca, Scio, Cephalonia, \&xc.

T HOSE in the Atlantic Ocean between Africa and Brafil, St Helena, well known to Mariners, Afcenfion Ifle, St Tbomas's 1/le, lying in the Equator.

MADERA which lies off the Streights of Gibraltar, towards America.

ZOCOTORA lying before the [Streights of Babelmandel].

GOTLAND lying in the Baltic.
PARADON, fuppofed by the Portuguefe Sailors (as Linfcboten relates) to lie about a hundred Miles Weft of the Canaries, hath this peculiar Property, that it is fometimes perceptable, but for the moft part invifible; fo that feveral Geographers difpute it's Exiftence. They tell us it's Fields are green and fertile, and that the Inhabitants are Chriftians, but they know not from what Nation they are defcended, or what Language they ufe. The Spaniards once made a Voyage from the Canaries to feek it, but could never find it: Therefore fome have thought it to be an Illufion, or Apparition; others will have it to be feen only fome certain Days of the Year, and at other Times to be covered with a Cloud. The whole Story feems to me fabulous and foolifh.

FLOATING Illands ought alfo to be reckoned among thefe, for which fee Chapter xviii.

PROPOSITION VIII.

To enumerate the Clufters of Iflands in the feveral Parts of the Globe.

WE generally call thefe Cluffers of Iflands, having no better Name to exprefs them by, fuch as:

1. THE Canaries, formerly called the Fortunate Iflands, which lie in the Atlantic Ocean, near the Weftern Shore of Africa, over againft Mount Atlas. They are [Seven] in Number, not reckoning the Salvages.
2. THE Azores, or Flandrian Iflands, betwixt Europe and America, in the Weftern Ocean; they are accounted Nine in Number.
3. THE Iflands of CapeVerd, or the Hefpeperides of the Ancients, lie in the Atlantic Ocean, near the Weftern Shore of Africa, over againt Cape Verd. Thefe are Ten in Number.
4. T HE Maldivia Ffands lie in the Indian Ocean not far from the Coaft of Malabar in India, and extend Nortb-Weft from the fecond Degree of South Latitude, to tbe feventb Degree of North Ldtitude. Their Number is very uncertain, fome reckoning tbem one Tboufand, and otbers twelve Tboufand. Narrow Cbanels, which feem to be woorn by the Currents, Separate them one from anotber, of wobich Jome are not a Stone's-caft over.
5. [THE Antilles comprebending] r. The Lucaios or Babama Ifands, fituated between Cape Floriaa and Cuba, are remarkable in being ohe of them (viz. St Salvador) the firft Land feen by Columbus, the firft of the Europeans that difcovered America. The Chief of them is Lucayo, from whence the reft are named [being of the larger fort, about feven Ifands] between Hifpaniola and the Old World. 3. [Tbe Stotovento and Bermundas IJands] to which are referred all thofe in the Gulph of Mexico.
6. THE [Comoro and Admiralty Iflands] lie between Madagafcar and Africa.
7. THE Molucco [and Sunda] Iflands are many in Number, of which five are particularly called [Spice Ifands]. They are furrounded by the Indian Sea.
8. THE. [old and new] Pbilippine Iflands near the remote Parts of $A f_{i} a$, are almoft innumerable.
9. THE Banda Ifands, and others betwixt fava and [Timor].
10. THE Agean Ifands, or thofe in the Arcbipelago.
i1. THE fapan Ifands.
11. [PRINCE William's Iflands] or thofe of Solomon in the Pacific Ocean.
12. THE Ladrone Iflands, in the fame Ocean.
13. THE Britifh ILands, or thofe about England and Scotland.
14. THE. Inands of Terra del Fuego, between the Streights of Magellan and thofe of la Maire.

TO thefe may be referred fuch Illands as are found in large Rivers, as thofe in the Nile in Africa, the Wolga, St Laurence in Canada, and in other Rivers: Alfo thofe obferved in Lakes or Morafles, fuch as are in the Morafs of Lambre in Africa, and in the Lakes of South America.

WE do not here reckon thofe Inands, that in great Numbers are ftretched along the Shores of fome Counties, as Norway, Cbina, Brajil, Davis's Streights, \&c.

PROPOSITION IX.

Befides the fe Iflands there are other Parts of the Earth, whofe Surfaces are different in Shape or Figure; fuch as Peninfulas's and Inthmuffes.

A Peninfula, called by the Greeks Cberfonefus, is a Part of the Earth joined to another by a narrow Neck of Land, and on every Side elfe encompaffed with the Sea. That narrow Tract or ftrait Paffage, whereby one Country hath communication with another by Land, is called an Iftbmus. We muft alfo here obferve thofe Parts of the Earth that are ftretched out into the Sea, but are joined by a larger Tract to the main Land, for fuch extended Parts form a Species of Peninfula's, and may in fome fenfe be fo called.

S U C H are ILaly, Spain, part of England, Greece and proper Acbaia, Afia minor, Norrvay with Sweden and Lapland, Indofan, New Guinea in the South Continent, [Nerw Holland] New Britain, and [New Scotland] in America, Cambodia, Patagon, the extream Parts of Africa, \&c.

$$
\text { PROPOSITION } \mathrm{X} \text {. }
$$

To enumerate the Peninjula's.
THESE Peninfula's are oblong, viz.

1. CHERSONESA d' or, or Malacca, contiguous to India.
2. CIMBRIC A, or Futland, contiguous to Holfein.
3. C ALIFORNIA, on the Weftern Shore of North America, is thought, by fome, to be a Peninfula; but commonly reprefented in our Maps as an Ifand.
4. YUCATA N, in the Bay of Mexico, contiguous to New Spain.
5. THE Cherfonefus of Romania, near the Hellefpont.
6. COREA, was formerly thought to be an Inland, and not a Peninfula. In fome Maps I have feen it joined to Tartary, and in others furrounded with the Sea. Neverthelefs, the lateft Obfervations make it a Peninfula; but even now it is not fettled among Geographers.
7. TO thefe may be added the three fmall ones of Ionia in lefer Afra [or Smyrna], Melaffo, and Halicarnafus.
THESE Six Peninfula's are roundifh, viz.
I. $\operatorname{AFRIC} A$, a great Part of the old World, furrounded by the Mediterranean, Atlantic, Atbiopic, Indian, and Red Sea. It is joined to Afia by a narrow Neck of Land near $\not \mathbb{E}^{\text {sgypt. }}$
8. 3. NORT'H and Soutb America viz. Mexico and Peru. They are joined together by the Streights of Panama.
1. PELOPONNESUS, now called the Morea, a Part of Greece.
2. TAURICA Cherfonefus, now called [Crim Tartary] in the Black Sea, near the Streigbts of Caffa. 6. CAMBAYA, or Guzarat, in India.
PROPOSITION XI.

There are as many Ifthmus's as Peninfula's. Tbofe of moft note are,

1. THAT of Suez, which joins Africa to Afia.
2. THAT of Corinth, which joins the [Morea to Acbaia.]
3. THAT of Panama, which joins Nertb America to South America.
4. THAT joining Malacca to India. And,
5. THAT joining [Crim to Precop Tartary.]

CHAP.

C H A P. IX.

Of Mountains in general.

MA N Y Things occur worthy of particular Notice, in explaining the Nature of Mountains, and therefore they are copiounly handled by Geographical Writers, especially the Computation of their Altitudes, becaufe they feem to many to make againft the Earth's Rotundity.
PROPOSITION I.

A Mountain is an elevated Part of the dry Land, overtopping the adjacent Country; and a Hill or Cliff is a fmall kind of Mountain. A Promontory, is a Mountain fretcbing itfelf into the Sea, and Rocks are Stones raijed above the Sea or Land, in the Form of Mountains.

We muft know that all the Parts of the Earth which appear plain, are not exactly of the fame Altitude, but commonly elevated towards the Inland Parts, and depreffed towards the Sea Shores, as is manifeft from the Origin and Courfe of Ri vers; for that Part towards which they flow, is always more depreffed than that where they Spring; and Fountains feldom are increafed into Rivers, unlefs they take their Origin from Mediterranean or inland Countries: which fhews, that thofe Countries are more elevated than the Maritime Parts. So Bobemia is known to be higher than Holfein, be-
caufe the River Elbe rifes in the former, and falls into the later. Alfo from the Danube, the Wefer, the Rbine, and the Mofelle, we perceive the greater Altitude of thofe inland Countries, from whence they flow. For this reafon, Switzerland and the Country of the Grijons, are accounted the higheft Lands in Europe; becaufe the Rbine, the Danube, and the Rbone, derive their fource from them. Moreover, the inland Countries are elevated above the maritime Parts, according to the different Declivity and Rapidity of the Rivers.

HERE follow fome Problems, by which we may form a Judgment upon the controverfial Writings handed down to us, about the different Altitudes of Mountains.

PROPOSITION II.

To take the Heigbt of a Mountain by Alimetry.
THIS is performed the fame Way as we take the Height of a Tower, provided the very Top of the Mountain be perceptible by any Mark.

LET AB (Fiz. 12.) be the Altitude of a Mountain, A the Foot of it, B the Mark feen at the Top. Take the Line FC at a convenient Diftance, fo that neither of the Angles AFC or A CF may be very acute, but nearly equal. Let the Angles BFC and BCF be obferved; and the Sum of their Degrees being taken from 180 the Remainder will give the Angle CBF (a). Then let C F the Diftance of the two Stations be accurately meafured; which done, fay, as the Sine of the Angle FBC, to the Sine of the Angle CFB: (or of FCB : if you would find FB) fo
(a) By Article 14. of Cbap. ii. abcve. Mountain from C. Then [with a Telefcope fixed to a Quadrant or otberwife] take the Angle BCA, and you will have alfo the Angle ABC, becaure the Triangle CAB is rectangular *.
THEREFORE in the Triangle ABC, As the Radius 10000000 , is to the Sine of the Angle BCA : fo is the Diftance BC, to the perpendicular Altitude of the Mountain AB.
FOR Example. Let us fuppofe that Xenagoras, the Son of Eumelus, ufed fome fuch Method as this to find the Height of the Mountain Olympus, which he is faid to have meafured exactly. Wherefore if he found the Angle BFC 84 degr. 18 min. and the Angle B C F 85 degr. 34 min . then was CBF 10 degr. 8 min. And fuppofe, by meafuring, or fome other Method, he found FC 1200 Grecian Feet, or 2 Furlongs. Therefore as the Sine of the Angle CBF io degr. 8 min . 17594 is to the Sine of the Angle BCF 85 deg . 34 min , 9970 I : fo is CF 1200 Feet to BF 6800 Feet, the Diftance from the Top. Likewife the Angle BFA being found, by fome Inftrument then in Uje to be 53 degr. 30 min. by faying, in the Triangle FAB, As Rad. 100000 to the Sine of the Angle BFA 89500: fo is FB 6800 to A B 6096 Feet, the Altitude of Mount Olympus. But 600 Feet make a Grecian Furlong; therefore dividing 6096 by 600 , the Quotient, 10 Furlongs 96 Feet, is the Height of Mount Olympus in Grecian Meafure, as Xenagoras found it. Note, Each of thefe Furlongs is about 2\% of a German Mile.

ARISTOTLE and feveral others affirm, that this Mountain, Olympus, is fo high, that there is no Rain, nor the leaft Motion of Air upon the Top of it ; which he, and the Ancients underftood

[^7]from
from their finding the Draughts of Letters made in Afhes, which had been regularly fcattered, to remain entire and frefh as they were at firlt, without being either confured or defaced in many Years; therefore they fuppofed it to be raifed above the fecond Region of the Air.

THERE is alfo another Method of taking the Altitude of Mountains, by two Stations in the fame Plane, with the perpendicular Height of the Mountain ; but this is fubject to Error becaufe of the fmall Difference of the Angles (b).
(b) There is a very pleafant and expeditious Method of taking the Height of Mountains by the Barometer, thas: It is to be obferved how many Inches or Parts of Inches the Quickfilver is depreffed at the Top of the Mountain, we have a mind to meafure, below the Altitude it hath acquired, at the fame Time, at the Bottom, or Superficies of the Sea ; from whence the true Height of the Mountain is found by an eftablifhed Proportion. This Proportion may be known by the Table we have added below to Chap. xix. Prop. 7. Alfo, by this Table, the Height of the Quickfilver at the Surface of the Sea may be found, by obferving it's Height at any Place, whofe Altitudeabove the Sea is known. But this is to be obferved, that the Altitudes found this way will be more accurate, the nearer the Height of the Quickfilver is to 28 Frenco Inches or to $29 \frac{13}{15}$ Englifb.
furin's Appendix.
This way of taking the Heigbt of Mountains, is very
expeditious and plearant, as Dr furin faith, and with due care may be very ufeful to feveral purpofes; particularly in meafuring the Heigbt of Ifands above the Sea, by two Obfervers, with well adjufted Barometers; and at the fame Inftant of time, obferving the Barometrical Heigbts, by the Seafide, and on the highelt Part of the I/and. So alfo it may Serve to give an Eftimate of the Height of a Fountain, or River, that we would have conveyed to fome Miles Diftance. But in all thofe Experiments, it is neceffary that the Barometer (as I faid) fhould be well adjufted, and (if two Obfervers) that the Obfervations fhould be made at the fame time, to prevent errors that may arife from errors in the Barometer, or from the Alteration of the Weight of the Atmofpbere; which fometimes changes in the very time of Obfervation, if we are not fpeedy therein.

For the Difcovery of a Mountain's, or any other, Heigbt, Dr Halley (from Barometrical

A LS O having the Height of a Tower given, and it's Diftance from the Mountain, we may more accurately find the Height. of the Mountain itfelf; thus, fuppofe F to be a Tower 300 Foot high, and from it's Top, or fome convenient Place, let BFP be obferved to be 83 degr. 30 min . then will BP be found to be 5796 Feet, to which the Height of the Tower is to be added: P A.

PROPOSITION III.

The perfpicuous Altitude of a Mountain being given, to find what Diftance we are from it; by a Quadrant [Theodolite] or any otber Surveying Inftrument, for taking Heigbts or Angles.

LET the Height of the Mountain A B be known beforehand, by the Obfervations of others, to be 10 Grecian Furlongs 96 Feet, or 6096 Feet. And let the Place of Obfervation be at F ; (Fig. 13.) the Diftance FA is fuppofed to be required. Let the Angle BFA by a Quadrant or [Tbeodolite] be found 63 degr. 30 min . Then in the rightangled Triangle BAF, where three Things are given, it will be as the Radius 100000 is to the Tangent of the Angle ABF 26 degr. 30 min. 4985^{8} : fo is AB 6096 to AF 3040 Feet, or 5 Furlongs

Obfervations on Snowden-Hill) concludes, that the Quickfilver defcends a Tenth of an Inch, every 30 Yards of Afcent. And Dr Derbam (by good Obfervations on the Monument in London) reckons 82 Feet for every tenth of an Inch. Vid. Lozother's's Abridg. Vol. 2. p. 13, Eoc. But by very nice Obfervations he afterwards made
with excellent Inftruments at divers Altitudes in St Paul's Dome, and when the Barometer was at a different Height, he found, at near 90 Feet, the Quickfilver funk ${ }_{10}^{\frac{2}{0}}$, and at fomewhat lefs than double, and treble that Height, $\frac{2}{10}$ and $\frac{3}{10}$, according to Dr Halley's Table, ibid. p. 16, and Mr Cafini's referred to in this Note (6.)

40 Feet

40 Feet, the Diftance required between the Place of Obfervation and the Mountain.

THERE are fome Inftruments by which you may perform this, without making ufe of the Canon of Sines, \&c. as is apparent from their Defcription, but the Refult is this way lefs accurate, for Want of Exactnefs in the Lines of Proportion.

Note. In both thefe Problems we have taken the Diftance FA for a right Line, becaufe of the fmall Difference between it and a Curve ; but Thall confider it as Part of the Periphery of the Earth in the following Methods.

PROPOSITION IV.

Having the Difance between a Mountain and the Place where it's Top may be firft Seen, given: to find Geographically the Heigbt of the Mountain.

LET us take, for Example, the prodigious high Mountain in the Inand of Teneriff, one of the Canaries, commonly called the Pike of Teneriff. Let AFC. (Fig. 14.) whofe Center is R, be the Periphery of the Earth, or the Meridian of the Mountain, and let AB be the Mountain itfelf. Draw from B the right Line BF a Tangent to the Periphery, and F will be the firft or laft Point from which the Top of the Mountain can be feen. (Then Draw R F.) Mariners affirm, that they firft difcover the Top of this Mountain when they are 4 Degr. of the Meridian diftant from it (and they need not be at a lofs for finding the Diftance from any Mountain in Degrees when they are failing under the fame Meridian it is in). Therefore, fuppoling their Relation to be true, and the firft vifual Ray BF to come in a direct Line from the Top B, let us endeavour to find out the Alti- tude of the Mountain. In the Triangle BRF there are three Things known. I. RF the Semidiameter of the Earth. 2. The Righe-angle BFR. And 3. Becaufe the Arch F A is 4 Degr. the Angle BRF is alfo 4 Degr. Therefore fay, As the Radius (100000000) is to the Secant of the Angle BRF 4 Degr. (100244 I 9) fo is RF (3440 Italian Miles or 860 German Mifes) to RB (3448 Italian Miles or 860 German Miles) ; fubftract RA (3440 or 860) and there will remain BA (8 Italian Miles, or 2 German Miles, for the Height of the Mountain [wbich is extraordinary, and even above the Computations of the Antients]. Therefore we muft know that there are two Things affumed as Truths which are actually falfe. 1. It is fuppofed that the Ray of Light which firft ftrikes the Eye, comes from B in a right Line, when it is known on the contrary to be curved, or refracted, by Reafon of the Denfity of the Atmofphere. For a Right Line cannot be drawn from the Top B to \mathbf{F} (F A being 4 Degr.) without paffing thro' a Part of the Earth, and therefore the Top B cannot be feen in a right Line from the Place F , but by the bowed Ray BTF, being the firft of the refracted Rays that can touch F. From whence we may reafonably infer, that this Refraction caufes the Mountain to be difcovered fooner by i Degr. (or 15 German Miles) than if there had been no Refraction at all; fo that fuppofing A F but 3. Degry the Height of the Mountain will be found but 40 Furlongs, or 5 Italian Miles. 2. It is to be confidered, that Sailors allow themfelves a Liberty of fpeaking largely, efpecially about their Diftances? if therefore, in Confideration of this, we deduet half a Degr. more, and fuppofe the Top firt feen at $2^{\frac{1}{2}}$ Degr. or 38 German Miles equal to FA; then will the Altitude of the Mountain A.B be found or thereabouts.

I F a Mountain be firft feen at 2 Degr. diftance, (fetting afide the Refraction) it will be found 2 Italian Miles high ; but if at 1 Degri or 15 German Miles, it will be half an Italian Mile, or 5 Furlongs high.

To this Purpofe is calculated the following Table.

If the Altitude of a Mountain be		$\frac{1}{7}$	$\frac{1}{6}$							

BUT thefe are all to be underftood without Refraction, whereby the apparent Height and Diftance is generally increafed, as may be feen by the Figure; where the refracted Ray T F being produced to N , gives the apparent Altitude $\mathrm{N} A$.
PROPOSITION V.

Having the Altitude of a Mountain given, to find Geograpbically it's Diftance from the Place, whence it may be firft feen.

THIS is but the converfe of the laft Propofition, and may be had from the foregoing Table: but Calculation will give a more accurate Solution.

LET therefore AB be the Height of a Mountain given, and fuppofe it to be firft feen at F, to find the Diftance AF. (Fig. 14.) In the right angled Triangle BFR, the Angle F is a right Angle, and the two Sides F R, R B are given, the former being the Semidiameter of the Earth, and the later the fame added to A B, which fuppofe half a German Mile ; fo that RF or RA being 86 2 min .40 Jec . Wherefore BRF or the Arch AF will be I. degr. 57 min . 20. Sec. which being turned into German Miles make $29^{\frac{1}{2}}$, the Diftance from whence a Mountain whofe Altitude is half a Mile, may be firft feen without any Refraction, upon which Account we may add 8 Miles, fo that it may be actually feen $37^{\frac{1}{2}}$ Miles off. But the Refraction varies according to the different Altitude of the Sun, or the different Denfity of the Air, when the Sun, is below the Horizon; as we fhall fhew more at large, when we come to treat of the Atmofphere; and in the third Part of this Book, where we fhall Difcourfe of the vifible Horizon.
PROPOSITION VI.

The Length of the Sbadow of a Mountain, and the Alitude of the Sun at the Same Time, being given, to find the Altitude of the Mountain.

W E propofe this Problem more for the Antiquity and Elegancy of it, than for any Accuracy we believe to be in the Method. Plutarch and Pliny have writ, that Mount Albos, on the Macedonian Shore, is fo high as that it overfhadoweth the Ine of Lemnos, [now called Stalimene] as far as the Market-place of the City of Myrrbina [or Lemnos], when the Sun is in the Summer Solltice; where the ancient Inhabitants for the Curiofity of the Appearance erected a Brazen Calf, at the termination of the Shadow, as is teftified by the old Greek Monoftich, wbich may be thus Engli/bed.

PLINX writes, that the Diftance between Atbos and the IMe of Lemnos, was accounted 87000 Paces, or 87 Italian Miles, "but neither he nor any other Author have determined the Altitude of the Sun, at the Time of this Shadow; tho' it is probable, it was projected upon the Town of Myrrbina when Mount Atbos', a little before Sun-fet, began to intercept their View of the Sun-Beams; the Sun being then in the fame vertical Circle, which paffeth over Atbos and Myrrbina (becaufe Atbos is fituated weftward of Myrrbina). We may fuppofe the Sun to have been almoft in the very Horizon of Myrrbina F O, and fo the Ray OF, paffing the Top of the Mountain, to have projected the Shadow AF. (Fig. 15). Here OF is a Tangent to the Periphery, and from having the Angle FBR given, and alfo FR, (or FA in the Triangle, BAF taken as a right Line) B A will be found to be 8 Furlongs, or I Italian Mile for the Height of the Mountain. But becaufe in this Pofition of the Sun, the Shadow would be infinitely continued, and therefore it's Extent could not be obferved; and as the Interpofition of the Houfes in the Town, would alfo intercept the neighboaring Rays, to thofe that bounded the Shadow ; therefore, we muft allow the Sun to have been elevated at leaft 2 Degr above the Horizon of Myrrbina;
 Anurias Boós.
Mr Salmon looks upon this to be a/very ridicalous Affertion, aid tells us that there never was a Shadow difcernable atro'Miles Diftance from the Hill that made it. But in Oppofition to this, Mr Edens fays, that he actually
faw the Shadow of the Pike of Teneriff upon the Sea reaching over the Illand Gomera, and the Shadow of the upper Part, viz. of the Sugarloaf to be imprinted like another Pike in the Sky it felf. See Salmon's Prefent State of all Nat. Vol. 5. Pag.396. and Pbilof.Tranf. $\mathrm{N}^{\circ} 345 \cdot$ Pag. 317. For

С H ар. 9. of Univerfal Geography. For Example, to S; fo that SF O may be 2 Degr. and SF a Ray of the Sun paffing the Vertex of the Mountain T, and terminating the Shadow in F.

THEREFORE in the oblique angled Triangle RFT, the Angle TFR 92 Degr. and FR T I degr. 6 min. (i. e. the Diftance F A 87 Italian Miles, turned into Degr.) hence F T R 86 degr. 54 min . and alfo the Semidiameter F R, 860 German Miles, being all given; the Side T R may be found by this Proportion. As the Sine of the Angle F T R 86 degr. 54 min . is to the Sine of the Angle TFR 92 degr. fo is FR 860, to RT 861 German Miles. So that AT, the Altitude of Mount Atbos, is I German Mile, or 32 Furlongs, which is too much; for the Grecians account it not above 1 I Furlongs

I F we affume the Altitude of the Sun to be but one Degr. the Altitude of the Mountain will be found but 20 Furlongs.

B UT Pliny, I fuppofe, has given us too large a Diftance betwixt Atbos and Myrrbina, which may perhaps be a Reafon, that too great a Height arifes from this Calculation: and in moft of our modern Maps of Greece, the Diftance FA feems to be but about 55 Italian Miles; wherefore the Angle FRT will be but about 55 min . So that fuppofing the Sun's Altitude to be I degr. 30 min . the Angle TFR will be 91 degr. 30 min . and F T R 87 degr. 35 min . Therefore in the Triangle FRT, as the Sine of the Angle FRT 87 degr. 35 min . is to the Sine of the Angle TFR 91 degr. 30 min . fo is FR 860 to RT.

OR in the Triangle TFA right angled at A, TFA will be I degr. 30 min . and FA , fuppofed a right Line, 55 Miles, from whence the Height TA will be found by this Proportion. As the Radius is to the Tangent of the Angle TFA, I degr. 30 min. fo is FA 55 Miles to AT, the Altitude of the Mountain.

VOL. I,
K
TO

TO this Place belongs the Solution of this Pro blem, viz. Having the difference of Time between the Sun's rifing (or fetting) on the Top of a Mountain, and it's firt Appearance to (or Occultation from) an Obferver at the Bottom, to find, if required, the Height of the Mountain ; and converfly, having the Height of the Mountain, to find this difference of Time. Arifotle and Pliny, have, by this Method of Calculation, fuppofed fome Mountains to be of incredible Altitudes, as appears from their Writings. However, fince the Solution of thefe Problems depends upon another, which we have referred to the fecond Part of this Work, we fhall refer them to Chapter xxx.

PROPOSITION VII.

Tbe bigbeft Mountains bave no Senfible Proportion to tbe Semidiameter of the Earth; or So little, tbat tbeir Altitude no more affects it's Rotundity, tban a. speck or particle of Duft upon the Surface of the artificial Globe does it's Rotundity.

WE have fhewed, that the Mountain in the Inand of Teneriff, called the Pike, is at moft no higher than a German Mile, or a German Mile and a half; and we are affured, that there are but few Mouritains in the World higher than that: Therefore fince the Earth's Semidiameter is 860 fuch Miles, the Altitude of this high Mountain is to the Earth's Semidiameter as it to 860. But few Mountains are of this Height, moft of them not exceeding a quarter of a Mile; wherefore they no more obftruct the Earth's fpherical Figure, than the fmall inequality obferved in Globes turned artificially, does their Rotundity; and Nature hath not yet been able to produce a Body of an exact Geometrical Roundnefs (d).

PROPOSITION VIII.

To explain the Origin of Mountains.

T H IS is a great Queftion with fome Philofo. phers, but others think it fuperfluous, and not fit to be enquired into ; becaufe they fuppofe Mountains to have had a Being ever fince the Creation. Neverthelefs Hiftory acquaints us, that not a few Mountains have been undermined by interior Ruins, and funk down into fubterraneous Chafms and Receptacles, or wafted by fome other Means; fo that fince we can perceive a natural Decay and Corruption of them, we may judge they do not proceed from a fupernatural Origin. Moreover, that feveral Mountains were raifed fuccefively, and at feveral Times, is apparent from the Quantities of Sea-fhells that are found in fome of them, as in thofe of Gelderland, \&cc. Such Mountains as thefe feem to be generated by a rapid Wind, carrying Sand and Gravel by Degrees into the form of the Mountain, which is afterwards foaked and made folid by the Rain. This is to be underftood in little Mountains, as to the very large ones it is probable, they
(d) Tho' the Body of the Moon be three times as little as the Earth, and the Protuberances or Mountains upon her Surface, three Times as high as the higheft upon the Earth's Surface; yet when fhe is at the full, and obferved with the naked Eye, we cannot perceive that thefe valt Mountains in the leaft obftruct, or deface her apparent Rotundity. On the contrary,
when the is viewed thro' a good Telefcope, we can fee the outward Edge of her Disk notched and maderugged, by the Tops of the Mountains rifing far above the other Parts of the Surface; which need not feem ftrange, when the beft polifhed Globe that ever was made, being viewed thro' a good Microff cope, is found not to be free from fuch Rugofities. created perfectly round, and with a foft Surface, without any eminent Parts or Mountains, without any Fiffures or Grottos; and afterwards, when GOD commanded the Waters to be gatbered together in one Place, then there were Chanels made to receive the Waters, and the Earth that was removed out of thefe Chanels, was converted into Mountains. But we leave it to them to prove, whether the Mountains be fo many, and fo large, as to fill all the Chanels of the Sea (e).

PROPOSITION IX.

To explain the Caufes, why Rain, Mifts, and Snows, are frequent upon the Tops of the Mountains; when in the neigbbouring Vallies, the Air is ferene and calm witbout any fucb Meteors.

W E are informed by thofe, that have travelled over the Mountains of Afia, Peru, and other Countries,
(e) - Dr Woodward, in his - Effay towards a Natural Hi-- Atory of the Earth, propofes - to prove, that the Strata at - firf, whether of Stone, of

- Chalk, of Coal, of Earth, or
- whatever other Matter they
- confifted of, (lying each up-
- on other) were all originally
- parallel: that they were plain,
- even, and regular; and the
- Surface of the Earth like-
- wife even and fpherical : that
- they were continuous, and
- not interrupted or broken:
c and that the whole Mafs of
the Water lay then above
' them all, and conflituted a - fluid Sphere environing the - whole Globe. That after
- fome Time the Strata were
- broken on all fides of the
- Globe: that they were dif-
- located and their Situation
- varied, being elevated in
- fome Places, and depreffed
- in others. That the Inequa-
- lities and Irregularities of the
- Terreftrial Globe, were cauf-
- ed by this Means: date their
- Original from this Difrup-
- tion, and are entirely owing
- unto it. That the more (eminent Parts of the Earth, were frequently attacked with Showers of Rain, Snow, and thick Fogs; but defcending thence into the neighbouring Vallies, they obferved no fuch Meteors, but enjoyed a ferene and pleafant Air. We alfo obferve the fame in the Mountains of our own Country.

SOME fay, the Caufe of this Phænomenon is owing to an occult Power that Mountains have of attracting Air, Clouds, and other Meteors; but fince they cannot explain this Power, they fay nothing to the Purpofe (f). The following Explication feems to me the moft rational, viz. That Vapours and Exhalations being conderifed into fmall Drops, in the middle Region of the Air, (into which the Tops of feveral Mountains rife) begin to defcend and fall upon the Tops of the fubjacent Mountains which are nearer them than the Vallies, and coming there firft to Ground, they leave their Places in the Air, which are prefently taken up by the fmall Drops that are next them; thefe being preffed and forced downwards by others, either to avoid a Vacuum, or becaufe it is the $\mathrm{Na}-$

- Mountains and Rocks, are - only the Elevations of the
- Strata; thefe wherever they
- were folid, rearing againt
- and fupporting each other in
- the Pofture wherein they
- were put, by the burfting 6 or breaking up of the - Sphere of the Earth.' Woodward's Effay. Pag. 90, 91, 92.
(f) The Air in Vallies is much heavier than the Vapours, and therefore fitted to fupport them better than that light Air which is upon the Tops of high Mountains. Therefore when the Vapours are put into a violent

Agitation, and, in fome meafure, condenfed by Winds, ar other external Caufes, they gather themferes into Clouds and Mifts, and by their own feecific Gravity, fall downwards, till they meet with fuch Air as is heavy and able to fupport them, with which they mix and fwim about, and are every way difperfed in it, whereby the Sky is made ferene and clear: but if they meet not with fuch Air, or light upon the Top of a Mountain before they come at fuch Air, then they are formed into Drops, and fall down to the Ground, that Place where the Flux was firft begun.

$$
\text { PROPOSITION } \mathrm{x} .
$$

There bappen to Mountains, Ruins, Ruptures, Tranfpofitions, \&c.

IT is but feldom fuch Accidents happen, yet fome Inftances are found in Hiftory, ofrecially of Ruptures, whereof we fhall give fome Examples in the following Chapter.
PROPOSITION XI.

Whetber the Superficies of a Mountain be more capacious tban the Plane whereon it ftands?

THAT it is larger is proved from Geometry : But whether it can lupport a greater Number of living Creatures, or produce a larger Quantity of Corn is another Queftion; to which I anfwer in the Affirmative. For tho' every thing placed upon the Surface of the Mountain, is fuppofed to ftand perpendicular to the fubjacent Plane, yet there is a greater Quantity of Earth, and a larger Superficies.

CHAP.

C HAP. X.

Of the Difference of Mountains and their Extent, and particularly of Burning Mountains.
PROPOSITION I.

Some Mountains are of fmall Extent, and others run out to a great Dijtance.

THE latter Sort, called Ridges, or Cbains of Mountains, are found almoft in every Country throughout the World ; and fuch might be accounted one continued Mountain, if it were not for fmall Breaches or Paffages that fometimes intervene. They are indifferently extended feveral Ways; fome from North to South, others from Eaft to Weft, and fome to other Points collateral to the four Cardinal ones.

THE moft celebrated Ridges of Mountains are,

1. THE Alps, which feparate Italy from the neighbouring Provinces, extending themfelves over vaft Tracts of Land, and ftretching out their Arms, or Branches, into diftant Countries, viz. thro' France to Spain, where they are called the Pyreneans ; and thro' Rbatia [i. e. the Country of the Grifons] where they are called the Rbetian Mountains; alfo thro' Hungary, where they are named the Hungarian Mountains; and above Dalmatia, where they receive the Name of the Dalmatian Mountains; from whence they are ftretchK 4 thro' the whole Length of Italy, and divides it into two Parts even to the Streights of [Me $\sqrt{2} n a]$; tho' it does not run every where directly forward in one Tract, but here and there fends out collateral Branches that run fideways from it. Several of thefe Mountains are diftinguifhed by particular Names, by Reafon of their Altitude, or for fome other Caufe, as Monte Mafo, Gaurus, Monte di Capua, the burning Mount Vefuvius, \&c.
2. THE Ridge of Mountains in Peru [called the Andes] is the longeft in the World. They run in a continued Tract about 800 German Miles, (whereof 15 make a Degree) thro' all South America, from the Equator to the Streights of Ma gellan, and feparate the Kingdom of Peru, from other Provinces. And fo high are the Tops of thefe Mountains, that they are reported to tire the Birds in their Flight over them; there being but one only Paffage over them as yet difcovered, and that very difficult. Many of them are covered with perpetual Snow, as well in Summer as in Winter. The Tops of others are hid in the Clouds, and fome are raifed above the middle Region of the Air. Several of the Spaniards, with their Horfes, have fuddenly expired upon the Tops of thefe Mountains, in their Paffage from Nicaragua to Peru, and growing ftiff with the Cold, they, in a Moment, became immoveable as Statues. The Caufe of which feems to be no other than the Want of fuch Air as was fit for Refpiration. There are alfo found among this Ridge of Mountains feveral that are fulpbureous and fmoaking.
3. THERE are many other Ridges of Mountains between Peru and Brafil, which are ftretched out thro' unknown Countries as far as the Streights of Magellan, where their Tops are covered with continual Snow, tho' they lie in the Latitude of 52 Degrees.
4. TO thefe may be added the Ridges of Mountains in Canada, and New England, whofe Tops are alfo perpetually covered with Snow, tho they are not fo famous as the reft.
5. MOUNT Taurus, in Afia, was antiently thought to make a Part of the largeft and nobleft Ridge of Mountains in the World. It begins to Shew itfelf in the Leffer Afsa near [tbe Gulpb of Statalia], and runs from Weft to Eaft, under feveral Names, thro' divers large Kingdoms, and Countries, even to India; whereby all Afia is divided into two Parts, of which that on the North Side is called Afia intra Taurum, and that on the South, Afia extra Taurum. This Ridge is as it were fenced on either Side with feveral others that accompany it, among which the moft celebrated are the Greater and Leffer Antitaurus, which feparate the Greater Armenia from the Leffer; alfo where Taurus itfelf paffes between Armenia and Mefopotamia, it fends forth many Branches towards the North and South.
6. THE Mountain Imaüs is extended North and South, and alfo Eaft and Weft, in the Form of a Crofs. The North Portion of it, is now called Alkai: It is ftretched out fouthward as far as the Borders of India, to the very Head of the River Ganges, and is computed in Length about 400 German Miles. It divides [Afiatic Tartary] into two Parts, formerly called Scytbia intra Ex extra - Imaĭon.
7. THE Mountains of Caucafus are about 50 Miles in Breadth, and extend themfelves lengthway from the Confines of the Caspian-Sea towards the Euxine-Sea. They are a fure Sea-Mark to thofe that fail in the Cafpian-Sea, to fteer their Courfe by. An Arm of them reaches to Mount Ararat in Armenia, upon which it is faid, in Sacred Scripture, the Ark of Noab refted; and the Turks and Perjans will have it to be preferved there to this very Day. Ararat is alfo not far from Mount Taurus, where all thefe Mountains are contiguous. We fhall treat of the Height of Mount Caucajus in Chapter xxx.
8. THE long Range of Hills in Cbina, which comprehends the Damafian Mountains of the Antients towards the Weft, and the Ottorocoran towards the North. This Range is compored of a vaft Number of Mountains, not altogether continued, but here and there affording a Paffage between them. The Mountains of Cambodia feem alfo to be a Part of this Range.
9. T HE Mountains of Arabia are drawn out in three Ranks, whereof the holy Mount Sinai is a Part.
10. MOUNT Atlas, in Africa, is made famous by the innumerable Fictions of the Greek Poets. It's Rife is near the weftern Shore of Africa, from whence it ftretches itfelf to the eaftward as far as the Confines of Egypt. Moft of the Rivers in this Continent take their Rife from it; and tho' it lie in the Torrid Zone it is cold and covered with Snow in feveral Places.
ii: THE Mountains of the Moon, near Monomotapa in Africa, fendeth out feveral Branches, which furround almoft all Monomotapa, and are diftinguifhed by divers Names, as Zeth, [Gibel, Caph,]
$\& c$. There are almoft innumerable other Branches in Africa, feparated one from another only by narrow Paffages, infomuch that they all feem to be Parts of the fame Range of Mountains.
11. THE Ripbean Mountains, in Europe, run from the Wbite-Sea, or Muscovian-Bay, to the Mouth of the River Oby; from whence they are called fometimes by that Name. The Mufcovites call them Weliki Kamenypoys, i. e. the great fony Girdle; becaufe they fuppofe them to encompals the whole Earth. Near thefe there is another Ridge of Mountains, which the Rufians call Foegoria; they reach from the South Borders of Tartary to the Nortbern Ocean. Several Rivers take their Rife from them, viz. Witfagda, Neem, Wifera, and Petfiora. Thefe are none of them well reprefented in Maps, and very often totally omitted. Alfo between Rufia and Siberia there are, befides thefe, a triple Range of Mountains running from North to South. The firft of thefe the Ruffians call Cofuinfoy Camen, which is two Days in paffing over. The next to this (fome Vallies intervening) is called Cbirginfcoy Camen, which is alfo two Days Journey over. The third, being higher than the reft, is named Podvinfory Camen, and in reveral Places is all the Year round covered with Snow and Fogs, fo that a Paffage is, with great Difficulty, obtained in four Days. The Town of Vergateria, in Siberia, is near this Range.
12. [THE Dofrine Hills,] which feparate Sweden from Norvay, arife near the South Promontory of Norway, and proceed in feveral Ranges to the fartheft Part of Lapland, being alfo diftinguifhed by feveral Names, as Fillefele, Dofrefel, \&c.
13. THE Hercynian Mountains in Germany [now Fiecbtelberg Mountains] furround Bobemia; and various Ways extend themfelves into divers Countries where they have different Names. In the Dukedom of Brunfwic they retain fomething of their antient Name, being called Der Hark; Mount BruEEerus is a Part of this Ridge.
PROPOSITION II.

In moft Iflands, and Parts of the Continent that run out into the Sea, the Ridges of Mountains are so fituated as to take their Courfe ibro' the middle of them, and divide them into two Parts.

IN Scotland the Grampian Mountain (or Granfbain as the Inhabitants call it) runs from Weft to Eaft tho' the middle of this Peninfula ; and divides it into two Parts, which very much differ both in the Nature of the Soil, and the Inhabitants. So in the Iflands of Sumatra, Borneo, Luconia, Celebes, Cuba, Hifpaniola, \&x. Chains of Mountains are found which arife gradually to a great Height, from the Sea-Shore to the Inland Parts.

THUS the Mountain Gate, in India, begins at the Extremity of Mount Caucafus, and reaches to Cape Comorin; whereby the Peninfula of India is divided, from North to South, into two Parts, whereof that Part which lies on this Side Gate, towards the Weft, is called Malabar ; and the other beyond the Mountain towards the Eaft is called Cormandel. Part of the fame Ridge of Mountains is alfo ftretched out into that Part of India which is now called Bengal, and from thence thro' Pegu, Siam, to the extream Parts of Malacca.

THERE is the like Ridge of Mountains in the Peninfula of Cambaya, and in the Ifland, or Peninfula, of California; alfo in the procurrent Parts of Africa, there is a Ridge which reaches In Italy there are the Apennine Mountains; and the like in Corea, \mathcal{E}_{c}.

A S to the Origin of there Ridges, whether they are of the fame Date with the Earth, or were afterwards generated from natural Caufes, is uncertain (a).

PRO-

(a) 'The learned Dr Wood-- ward, in his Effay abovemen-

- tioned Page 280, proves,
- that there were Rivers as well
- as Sea in the Antediluvian
- Earth, from the great quan-

6 tities of River-Shells that were

- then brought forth, and left in-
- clofed among others in the
- Strata of Stone, Ejc. And

6 if there were Rivers, there - muft needs alfo have been

- Mountains ; for they will not
- flow unlefs upon a Declivity,

6 and their Sources be raifed a-

- bove the Earth's ordinary Sur-
- face, fo that they may run
- upon a Defcent. Mojes alfo,
- treating upon the Deluge,
- faith in Gen. vii. 19. E'c.
- And the waters prevailed ex-
- ceedingly upon the eartb; and
- all the bigh bills that veere
${ }^{6}$ under the zobole beaven were
- covered. Fifteen cubits up-
- ward, did tbe waters prevail;
- and the mountains weere cover-
- ed. And all flefb died:-
- all in whofe nofirils was the
- breatb of life. Here he
- plainly makes thefe Antedilu-
- vian Mountains the Standards
- and Meafures of the Rife of
- the Water; which they could
- never have been, had they not
- been flanding when it did fo - rife and overpower the Earth.
- His Intention, in the whole, - is to acquaint us, that all - Land Creatures whatever, - Both Men, Quadrupeds, - Birds, and Infects, perifhed, - and were deftroyed by the - Water ; Noab, only excepted, - and tbey that were switb - bim in tbe ark. And at the - fame Time to let us fee the
- Truth and Probability of the
- Thing: to convince us there
- was no Way for any one to
- efcape, and particularly that

6 none could fave themfelves

- by climbing up to the Tops of
- the Mountains that thenwere,
- he affures us that they, even

6 the higheft of them, were all

- covered and buried under
- Water. Now to fay that

6 there was then no Mountains
6 and that this is meant of

- Mountains that were not for-
- med 'till afterwards, makes it
- not intelligible, and indeed - hardly common Senfe. Thus far Dr Woodzard. But at the univerfal Deluge, the Mountains in general were defaced, levelled, and diffolved, as it were, and promifcuoufly mixed with the Waters, which ranfacked and tore up their very Foundations, fo as to make one common confufed Mafs. Therefore thefe Mountains of our prefene

PROPOSITION III.

To enumerate the Mountains famous for their Height.

1. THE Pike of Teneriff, which the Inhabitants call Pico de Terraira, is accounted the higheit Mountain in the World ; and it's Top is plainly perceived at Sea 60 Miles before we come up to it, as was faid in the preceding Chapter. There is no afcending it but in the Months of fuly and Auguft, for at other Times it is covered with Snow, tho there is never any feen in the reft of the Inand, or in the neighbouring Canaries. It's' Top doth plainly appear to be above the Clouds, which are often feen to furround the middle Part; but becaufe it is ufually covered with Snow, it is certainly, not elevated above the middle Region of the Air. It requires three Days to afcend this Mountain, whofe Vertex is not fharp-pointed but plain; from whence, on a clear Day, one may fee diftinctly the reft of the Canaries, tho' fome of them are fifty Miles remote from it. In the two Months abovemention'd great Quantities of fulphureous Stones are dug out of the Side of this Mountain, and carried into Spain. Scaliger writes, that this Mountain continually vomited out burn-
fent Earth, are not the fame with the Antedilavian Mountains, but were formed at the Delinge, out of the confured Heaps of feveral forts of Matter, which (when the Caufe of the general Devaftation ceafed) began to curdle as it were, and fettle in innumerable Forms and Shapes; fome extending themfelves into long Ridges, others into round and rugged Shapes;
juft as the fubfiding Waters happened to dafh out, or pile up, their Particles, by wafhing and hollowing their Sides, or carrying the loofe and unfettled Earth, towards the Drains and Sluices which were naturally formed to carry the Water downward to the Ocean. How the Antedilavian Mountains were formed fee Chapter vii. Note (f) above.
${ }^{i}$ ng Coals formerly (b). I am ignorant from what Author he had it, and never found any fuch Thing in thofe I have read.
2. I N one of the Azores, or weftern Iflands, near the Inand Fayal, there is found a Mountain called the Pike of St George, from whence the Inand itfelf is called Pico. It is faid to be as high as the Pike of Teneriff, or fomething higher.
3. T HE Ridge of the Cordileras, or Andes, in South-America, which feparates Peru from other Countries, is one of the vafteft and higheft Mountains in the World. It is extended from the Streights of Magellan to Panama.
4. $\notin \mathcal{T} N A$, a Mountain in Sicily; when it cafteth forth Fire the Sparks are feen from the Inand of Malta, from whence it is fuppofed to be at leaft a [German] Mile high ; but that this is a Deception of Sight we have fhewed in the preceding Chapter.
5. HECLA a Mountain in Iceland.
6. PICO de Adam in the Iland of Ceylon.
7. MOUNT Bruzterus and Abnoba in Germany.
8. MOUNT Fisenojamma in fapan is thought to reach above the Clouds.
9. M O UN T Caucafus was thought to be of an incredible Height by the Antients.
(b) It is very likely this Mountain might burn formerly, for there is a Crater, or Tunnel, on the Top, that produceth a fort of fulphureous Earth, which, being rolled up long-ways, and put to a Candle, will burn like Brimftone; and feveral Places upon the Ledges of the Pike are even now burning or fmoaking; and in fome Places, if you turn up the Stones, you will find very
fine Brimftone, or Sulphur, fticking to them. Alfo at the Bottom there are Stones which fhine, and look like Drofs that comes out of a Smith's Forge; which, without Doubt, was occafioned by the extream Heat of the Place they came from. This is teftified by Mr Edens who made a Journey thither in the Year 1715, which fee in Pbilof. Tranf. No. 345. Page 317. Macedonia. Pliny fays, that the Mathematician Dicearcbus Siculus meafured this Mountain by the Command, and at the Expence, of fome Princes, and found it to be 1250 Paces, that is 10 Furlongs, or $\frac{1}{3}$ of a German Mile: and Geminus tells us, that the fame Dicearcbus found the Mountain Cyllene to be of the fame Altitude.
Ii. MOUNT Atbos was thought by Mela to be fo high as to rife above the higheft Clouds, and therefore never to be rained upon. This \mathbf{O} pinion had it's Rife from the Afhes which were left upon the Altars, erected at the Top of it, being not wafhed away, but found upon a Heap as they had been left. It runs out with a long Ridge into the Sea. Xerxes, when he made his Expedition to Greece, cut thro' this Mountain in that Place where it is joined to the Continent, and let the Sea in at the Breach, whereby it was made navigable.
10. MOUNT Olympus in leffer Afia, of which we have treated in the preceding Chapter.
11. CASIUS [now LiJon] a Mountain in Afia, which is faid by Pliny to the four Miles high.
12. MOUNT Hamus [now Balkan] is faid by Martianus Capella to be fix Miles high.
13. THE Rock of Sijimetbra, Strabo tells us, was found to be fifteen Furlongs high; and the Rock Sodiane twice the Height.
14. MOUNT Atlas in Africa, which we fpoke of before. The Poets feigned it fo high, that it fupported the Heavens upon it's Shoulders; but Experience hath taught us that it's Height is not fo very confiderable.

Chap. 10. of Univerfal Geography.

PROPOSITION IV.

To enumerate the remaining Differences of Mountains.
IN the former Propofitions we have explaincd three Differences, viz.
i. SOME are extended in a long Tract, others are bounded with narrow Limits.
2. SOME run thro' the middle of Countries, others are extended here and there in them.
3. SOME are of a remarkable Alitude, others of a middle, and fome very low. To thefe we may add,
4. S OME are fandy, others rocky, fome chalky, and others of Clay, © $\overbrace{}^{\circ}$.
5. SOME produce Fountains and Heads of Rivers, others are without them.
6. SOME are adorned with Woods, others are bare and deftitute of Trees.
7. SOME are burning and fmoking, others without Fire or Smoke.
8. S O M E Mountains yield Metals, as Gold, Silver, Iron, \mathcal{O}_{6} c. others produce no fort of Metal.
9. S O M E are continually covered with Snow, others have none in Summer.
PROPOSITION V.

To cnumerate the burning Mountainss, and fucb as caft out Fire.

S U C H Mountains are called Vuleanos, a Name firft ufed by the Portugueze Sailors, and now they are commonly fo called.

1. T H E moft famous of thefe is Mount Etna, (now Gibel) in Sicily, whofe Erupticns of Flame

VOL.I.
L
and thofe that fail on the Mediterranean, even as far as the Harbour of Malla, which is 40 German Miles from the Shore of Sicily. Tho' Fire and Smoke are continually vomited up by it, yet at fome particular Times, it rages with greater Violence. In the Year 1536 it fhook all Sicily, from the firft to the twelfth of May: after that, there was heard a moft horrible bellowing and cracking, as if great Guns had been fired: then were a great many Houfes overthrown throughout the whole Inland. When this Storm had continued about eleven Days, the Ground opened in feveral Places, and dreadful Gapings appeared here and there, from which iffued forth Fire and Flame with great Violence, which in four Days confumed and burnt up all that were within five Leagues of Etna. A little after, the Funnel, which is on the Top of the Mountain, difgorged a great Quantity of hot Embers and Afhes, for three whole Days together, which were not only difperfed throughout the whole Illand, but alfo carried beyond Sea to Italy; and feveral Ships that were failing to Ve nice, at 200 Leagues diftance fuffered Damage (c). Farellus hath given us an Hiftorical Account of the Eruptions of this Mountain, and fays, that the Bottom of it is 100 Leagues in Circuit.
2. HECL A, a Mountain in Iceland, rages fometimes with as great Violence as $\not \subset t n a$, and cafts out great Stones. The imprifoned Fire often, by wanting Vent, caufes horrible Sounds, like Lamentations and Howlings, which make fome credulous People think it the Place of Hell, where the Souls of the wicked are tormented.
(c) Mr Oldenberge hath alfo na, which fee in Pbilof. Iranf. given us an Hiftorical Account, No. 48. Pag. 967. of the Eruptions of Mount /Et-
3., VEESUVIUS
3. VESUVIUS (now Monte de Soma) in Campania, not far from the Town of Naples, tho' it be planted with moft fruitful Vines, and at other Times yieldeth the beft Mufcadel Wine ; yet it is very often annoyed with violent Eruptions (d).

Dion
(d) That the Reader may bave a better Iden of theje burning Mountains, and their dreadful Eruptions, I 乃all tranforibe (from Philof. Tranf. No. 354. Pag. 708.) an Extract of a Letter of Mr Edward Berkeley from Naples, giving an Account of the Eruptions of Fire and Smoke, from Mount Vefuvius. Communicated to the Royal Society by Dr John Arbuthnot, M. D. and R. S. S. as followes:

- April17.1717. With much
- Difficulty I reached the Top of
- Vefuvius, in which I faw a vaft
- Aperture fullof Smoke, which
- hindred the feeing it's Depth
- and Figure. I heard within
- that horrid Gulph certain odd
- Sounds, which feemed to pro-
- ceed from the Belly of the
- Mountain ; a fort of Murmur-
- ing, Sighing, Throbbing,
- Churning, dafhing (as it were) 6 of Waves, and between whiles - a Noife like that of Thunder - or Cannon, which was con-- Itantly attended with clatter* ing, like that of Tiles falling
- from the Tops of Houfes on
- the Streets. Sometimes as the
- Wind changed, the Smoke - grew thinner, difcovering a - very ruddy Flame, and the - Jaws of the Pan, or Crater, - ftreaked with red, and feveral - fliades of Yellow. After an - Hour's flay, the Smoke being
- moved by the Wind, gave - us fhort and partial Pro-- fpeets of the great Hollow in - the flat Bottom, of which [- could difcern two Furnaces, al-
- moft contiguous; that on the
- left, feeming about 3 Yards
- in Diameter, glowed with red
- Flame, and threw up red hot
- Stones, with a hidenus Noife,
- which as they fell back caufed
- the forementioned clattering.
- May 8. In the Morning I afa - cended to the Top of V efuri-
- us a fecond Time, and found
- a different Face of Things.
- The Smoke afcending up-
' right, gave a full Profpect of
- the Crater, which as I cou'd
- judge, is about a Mile in
- Circumference, and a hun-- dred Yards deep. A conical
- Mount had been formed fince
- my laft Vifit in the middle

6 of the Bottom. This Mount

- I could fee was made of the
- Stones thrown up and fallen
- back again into the Crater.
- In this new Hill remained
- the two Mouths or Furnaces
- already mentioned: that on
- our left Hand was in the Ver-
- tex of the Hill, which it had
- formed round it, and raged
- more violently than before,
- throwing up every three or
- four Minutes, with a dread.
- ful bellowing, a vaft Num-- ber of red hot Stones, fomeL 2
times

Dion Cafius relates, that in the Reign of Vefpafian, there was fuch a dreadful Eruption of impetuous Flames, that great quantities of Afhes and fulphureous Smoke were carried not only to Rome by the Wind, but alfo, beyond the Mediterranean, into

- times, in Appearance, above
- 1000 , and at leaft 300 , Foot
- higher than my Head as I
- ftood upon the Brink. But
- there being little or no Wind,
- they fell back perpendicular-
- ly into the Crater, increafing
- the conical Heap. The other
- Mouth was lower in the Side
- of the fame new formed Hill,
- I could difcern it to be filled - with red hot liquid Matter,
- like that in the Furnace of a
- Glafs-houfe, which raged
- and wrought, as the Waves
- of the Sea, caufing a fhort a-
- brupt Noife, like what may
- be imagined to proceed from
- a Sea of Quickfilver, dafhing
's among uneven Rocks. This
- ftuff would fometimes fpew
- over, and run down the con-
- vex Side of the conical Hill,
- and appearing at firft red hot,
- it changed Colour, and hard-
- ned as it cooled, fhewing the
- firt Rudiments of an Erup.
- tion, or, if I may fo fay, an
- Eruption in Miniature. Had
e the Wind driven in our Face,
- we had been in no fmall
- Danger of ftifling by the fur-
- phureous Smoke, or being
- knocked, on the Head, by
- lumps of molten Minerals,
-6 which we faw had fometimes
- fallen on the Brink of the
*. Crater, upon thofe fhot from
- the Gulph at the Bottom.
- But as the Wind was favour-
- able, I had an Opportunity - to furvey this odd Scene for
- above an Hour and a half to-
- gether; during which it was

6 very obfervable, that all the

- Vollies of Smoke, Flame, and
- burning Stones came only out
- of the Hole to our left, while
- the liquid ftuff in the other
- Mouth wrought and over-
- flowed, as hath been already
- defcribed. June 5. After a
- horrid Noife, the Mountain
- was feen at Naples to fipew a
- little out of the Crater. The
- fame continued the 6th. The
- $7^{\text {th }}$. nothing was obferved
c till within two Hours of
- Night, when it began a hi-
- deous bellowing, which con-
- tinued all that Night, and - the next Day till Noon, cauf-- ing the Windows, and, as - fome affirm, the very Houfes - in Naples to fhake. From - that time it fpewed vaft - Quantities of molten Stuff to - the South, which ftreamed - down the Side of the Moun-
- tain, like a Pot boiling over.
- This Evening I returned from
' a Voyage thro' Apulia, and
- was furprized, paffing by the
- North Side of the Mountain,
' to fee a great Quantity of
- ruddy Smoke lie along a huge
- Tract of Sky over the River
- of molten Stuff, which was were fuffocated in the Air, and fell down dead upon the Ground, and Fifhes perifhed in the neighbouring Waters, which were made hot and infected by it. There happened another Eruption
- itfelf out of Sight. The $9^{\text {th }}$,
- Vefuvius raged lefs violently;
' that Night we faw from Na -
${ }^{6}$ ples, a Column of Fire Moot
' between whiles out of it's
- Summit. The 10 th, when
' we thought all would have
' been over, the Mountain
' grew very outragious again,
- roaring and groaning moot

6 dreadfully. You cannot form
' a jufter Idea of this Noife, in
6 the violent Fits of it, than
6 by imagining a mix'd Sound
6 made up of the raging of a
${ }^{6}$ Tempeft, the murmur of a
' troubled Sea, and the roaring
6 of Thunder and Artillery,
' confufed all together. It was
' very terrible, as we heard it
' in the further End of Naples,
' at the Diftance of above 12

- Miles. This moved my Cu-

6 riofity to approach the Moun-
' tain. Three or four of us
' got into a Boat, and were fet

- afhore at Torre del Greco, a
- Town fituate at the Foot of
' Vefuvius to the South Welt,
' whence we rode four or five
- Miles before we came to the
- burning River, which was a-

6 bout Midnight. The roaring
' of the Vulcano grew exceed-

- ing loud and horrible as we
' approached. I obferved a
- mixture of Colours in the
- Cloud over the Crater, green,
' yellow, red, and blue; there
6was likewife a ruddy difmal
- Light in the Air over that
- TraCt of Land, where the
- burning River flowed; Ahes
- continually fhowered on us
' all the Way from the Sea-
- Coaft. All which Circum-
- ftances, fet off and augmen-
- ted by the horror and filence
- of the Night, made a Scene
- the moft uncommon and a-
- ftonihing I ever faw ; which
- grew ftill more extraordinary
- as we came nearer the Stream.
- Imagine a vaft Tcrrent of li-
' quid Fire rolling from the
- Top down the Side of the
- Mountain, and with irrefilti-
- ble Fury bearing down and - confuming Vines, Olives,
- Fig-trees, Houles, in a word,
' every Thing that flood in it's
- Way. The largelt Stream
- feemed half a Mile broad at
- leaft, and five Mites long. I
' walked fo far before my Cour-
' panions up the Mountain, a-
- long the Side of the River of
- Fire, that I was obliged to
- retire in hafte, the fulphure-
' ous Steam having furprized
- me, and almoft taken away
' my Breach. During our Re-
' turn, which was about three - o'Clock in the Morning, we
- conftantly heard the murmur
' and groaning of the Moun-
' tain, which between whíles
- would burlt out into louder
- Peals, throwing up huge
- fpouts of Fire, and burning

$$
\mathrm{L}_{3} \text { 'Stones, }
$$

in Martial's Time, which he elegantly defcribes in one of his Epigrams, and laments the fad Change of the Mountain, which he faw firlt in it's Verdure, and immediately after black with Afhes and Embers. When the Burning ceafed, the Rain and Dew watered the Surface of the Mountain, and made thefe fulphureous Afhes and Embers fruitful, fo that they produced a large Increafe of excellent Wine; but when the Mountain began to burn again, and to difgorge Fire and Smoke afrefh (which fometimes happened within a few Years) then were the neighbouring Fields burnt up, and the High-ways made dangerous to Travellers.
4. A Mountain in $\mathcal{F} a v a$, not far from the Town of Panacura, in the Year 1586, was fhattered to Pieces by a violent Eruption of glowing Sulphur, (tho' it had never burnt before) whereby (as it was reported) 10000 People perifhed in the underland Fields: it threw up large Stones, and caft them as far as Pancras, and continued for three Days to throw out fo much black Smoke, mixed with

- Stones, which falling down - ag:in, re'embled the Stars in - our Rockets. Sometimes I
- obierved two, at others three,
- diltint Columns of Flame,
- and lometimes one vaft one,
' thit feemel to fill the whole
- Crater. Thefe burning Co-- Jumns, and the fiery Stones,
- feemed to be fhot 1000 Foot
- perperdicular above the Sum-
' mit of the Vulcano. The $11^{\text {th }}$
' at Night, I obferved it from
6 a Terrafs at Naples, to throw
- upinceffantly a vaft Body of
- Fire and great Stones, to a
- furprifing Height. The 12'h

6 in the Morning, it darkened

- the Sun with Afhes and
- Smoke, caufing a fort of E-
- clipfe. Horrid Bellowings, - this and the foregoing Day, ' were heard at Naples, whi-- ther Part of the Afhes allo ' reached. On the $13^{\text {th }}$, the - Wind changing, we law a Pil-- lar of black Smoke fhoot up-- right to a prodigious Height.
- The $15^{\text {th }}$ in the Morning, the
- Court and Walls of our Houfe
- in Naples were covered with ' Ahes. In the Evening,
- Flame appeared on the Moun-
' tain thro' the Cloud. The $17^{\text {th }}$,
- the Smoke appeared much di-
- minihed, fat and greafy. The
- $18^{\text {th }}$, the whole Appearance
- ended, the Mountain remain-
- ing perfectly quiet without a-
' ny vifible Smoke or Flame.'

Снap. 10. of Univerfal Geograpby.
Flame and hot Embers, that it darkened the Face of the Sun, and made the Day appear as dark as the Night.
5. MOUNT Gonnapi, in one of the Banda Inands, when it had burnt for 17 Years together, in April 1586 , broke out with a terrible bellowing Noife, and difgorged fuch large Quantities of great Stones, and thick fulphureous burning Matter all over the Sea and Land, that it threatned Deftruction to all that were near it. Hot Afhes and Embers were vomited out with fuch a Force, and in fuch great Quantities, that they covered the great Guns of the Dutch, which were planted upon the Walls of their Citadel, and rendered them unferviceable. Red hot Stones above a Span long, were caft into the Sea, and fuch a Number of little ones, that fmall Ships had fcarcely a free Paffage out of the Harbour. The Water near the Shore was heaved up, and feemed to boil for feveral Hours, as if it had been fet over a Fire; and feveral dead Fifhes were found floating upon the Surface.
6. MOU N T Balaluanum in Sumatra, vomiteth Flame and Smoke as /Etna doth.
7. THE Ground in feveral Places in the Molucca Iflands belches out Fire with a raging Noife; but none are fo terrible as the Spiracle in the Ifland Ternata. The Mountain, which is fteep and difficult to afcend, is covered towards the Bottom with thick Woods, but the Top which is elevated to the Clouds, is made bare and rugged by the Fire. The Funnel is a vaft Hollow, which goes fhelving down, and by Degrees becomes lefs and lefs, like the infide of an Amphitheatre; from whence, in Spring and Harveft Time, or about the Equinoxes, when fome particular Winds blow, efpecially from the North, there are caft forth, with a rumbling Noife, Flames mixed with black

Smoke, and hot Embers; whereby all the Places far and near are ftrewed with Afhes. The Inhabitants vifit it at fome certain Times of the Year, to gather Sulphur, tho' in fome Places the Hill cannot be afcended, but by Ropes faftned to Iron Hooks.
8. There is an Ifland about 60 Leagues from the Miluccas, (being one of thofe that belong to the Moors) which is often all together fhaken with Earthquakes and Eructations of Fire and Afhes in abundance; fo that whole Rocks and Mountains are often made red hot by the Heat of the fubterraneous Fire, and burning Stones are blown up into the Air, as large as the Trunks of Trees. When there is a brifker Wind than ordinary, fuch Clouds of Afhes are blown all over the Country, that People labouring in the Fields are forced to haften Home, half covered with them ; and Boars, and other living Creatures, are found buried in them, after the Storm is over. Fifhes near the Sial Shore are poifoned with the Afhes, and fo are the Inhabitants if they tafte any of the Water wherewith they are mixed. This difafterous black and poifonous Fire breaketh out, from the Top of a Mountain, with a difmal rumbling Noife like Thunder-claps, or the report of great Guns, and bringeth up with it abundance of Aihes, and burnt Pumice Stones.
9. THERE is a Mountain in $\mathfrak{J} a p a n$, which continually vomiteth forth Flames; where it is reported the Devil fhews himfelf, furrounded with a bright Cloud, to fome particular Perfons after they have, for Performance of their Vows, kept themfelves lean for a long Time.
10. THERE are feveral other Vulcanos in the Faban Inands; about feventy Miles from Fi rando there is one, and in a fmall Illand between Tanaxima and the Siven Sijters (Inands fo named) there is another, which now and then is obferved to burn, and at other Times to fmoke.
11. N EA R the Cape Spiritu Sancto in Tandaya, one of the Pbilippines, there are found fome fmall Vulcanos; and one in Marinda, which is a Part of the faid Iflands.
12. IN Nicaragua a Province of America, thirty Leagues from the Town of Leon, there is a Mountain, of a vaft Height, which difgorgeth fuch quantities of Flame, that they may be perceived at ten Miles diftance.
13. IN the Peruvian Range of Mountains (called the Cordilleras) there are in feveral Places burning Rocks and Mountains, fome vomiting Fire and Flame, and others fmoaking; efpecially thofe in Carrapa a Province of Popaiana, which are perceived in clear Weather to emit a deal of Smoke.
14. NEAR Arequipa, a Town in Peru, about ninety Leagues from Lima, there is a Mountain which continually vomits fulphureous Fire, which, the Inhabitants are afraid, will fome Time or other burft and overthrow the Town adjacent to it.
15. IN Peru, near the Vale called Mulaballo, about fifty Leagues from Quito, there is a Vulcano, or fulphureous Mountain, which, fome Time fince, burft and threw out great Stones, with a dreadful Noife, which frighted People even at a great Diftance.
16. I N one of the Iflands called Papoys, which La Maire difcovered (tho' perhaps it be not an Ifland, but is joined to the eaftern Shore of $N_{e r e}$ Guinea) there is a Mountain which, at that Time, burnt and fmoked.
17. THERE are feveral Mountains (as the Muscovites tell us) in the Country of the Ton-Guifins, Weeks Journey from the River Oby, which produce Vulcanos and fmoking Mountains.
18. THERE are alfo fome of this fort near the River Pefida beyond the Country of the TonGuijins.
19. THERE is a Mountain in Fez, called Beni-Gua-zeval, which hath a Cave in the Side of it, that vomiteth out Fire.
20. IN Croatia, not far from the Sea-Shore near the Town of Apollonia, there is a rocky Mountain, from whofe Top there often breaks out Fire and Smoke; and, in the adjacent Places, feveral of the Springs are hot.

THERE are alfo fome Mountains which have left off burning; fuch as that in the Inland Queimoda upon the Shore of Brafil, not far from the Mouth of the Silver River, or Rio de la Plata, which burnt formerly, but now ceafes. Likewife the Mountains in Congo or Angola; alfo thofe in the Azores (efpecially in Tercera and St Michael) which ufed formerly to burn in feveral Places, but at prefent only emit, now and then, Smoke and Vapours; whence they are annoyed with more frequent Earthquakes. The Iflands of St Helena and $A f$ cenfion produce Earth which feems to be compofed of Drofs, Afhes, and burnt Cinders; fo that in Time paft it is probable the Mountains in thefe Iflands burned; and further, becaufe in thefe, as well as in the Azores, there are found fulphureous Earths and Slags, like the Recrements of Smitby Coal, which are every Way fit to take Fire, and make Smoke; it will be no wonder if new Vulcanos fhould, fome Time hence, be kindled and break forth in thefe Iflands; for the Caufe of thefe burning Mountains is a fulphureous and bitumi-

CHap. 10. of Univerfal Geography. 155 bituminous Matter, which is contained and kindled in them ($($).
(e) Earthquakes and Vulcanos are both produced from the fame Caufe; which may be thus explained. Thofe Countries which yield great fore of Sulphur and Nitre, or where Sulphur is fublimed from the $P y$ rites, are by far the moft injured and incommoded by Earthquakes; for where there are fuch Mines they mull fend up Exhalations, which meeting with fubterraneous Caverns, they muft ftick to the Arches of them, as Soot does to the Sides of our Chimnies, where they mix themfelves with the Nitre or Saltpeter, which comes out of thefe Arches, in like manner as we fee it come out of the Infide of the Arch of a Bridge, and fo makes a kind of Cruft, which will very eafily take Fire. There are feveral ways by which this Cruft may take Fire, viz. 1. By the inflammable Breath of the Pyrites, which is a kind of Sulphur that naturally takes Fire of itfelf. 2. By a Fermentation of Vapours to a degree of Heat, equal to that of Fire and Flame. 3. To the falling of fome great Stone, which is undermined by Water, and ftriking againf another, produces fome Sparks which fet Fire to the combuftible Matter that is near; which, being a kind of natural GunPowder, at the Appulfe of the Fire, goes off (if I may fo fay)
with a fudden Blaft or violent Explofion, rumbling in the Bowels of the Earth, and lifting up the Ground above it, fo as fometimes to make milerable Haveck and Defruction. 'till it gets Vent or a Difcharge. Burning Mountains and Vulcanos are only fo many Spiracles ferving for the Difcharge of this fubterranean Fire, when it is thus preternaturally affembled. And where there happens to be fuch a Structure and Conformation of the interior Parts of the Earth, that the Fire may pa fs freely and without Impediment from the Caverns therein, it affembles unto thefe Spiracles, and then readily and eafily gets out, from Time to Time, without fhaking or difturbing the Earth. But where fuch Communication is wanting, or the Paffages not fufficiently large and open, fo that it cannot come at the faid Spiracles without firt forcing and removing all Ob ftacles, it heaves up and fhocks the Earth, till it hath made it's Way to the Mouth of the Vulcano; where it rufheth forth, fometimes in mighty Flames, with great Velocity, and a terrible bellowing Noife. See Woodzard's Eflay Page 157, 158. Robault's Pbyfics Part 3. Cbap. 9. Sect. 23, 24. Pbilof. Tranf. No 157. Pag. 512.
PROPOSITION.VI.

Some Ranges of Mourtains afford no Apertures, as otbers afford many; and fome are difcontinued but in one or treo Places.

THESE Streights, or Paffages, were formerly called Tbermopyla, of which the moft famous are, 1. The Thermopyle of Mount Oeta [or Banina] in Theffalia, [now called Bocca de Lupo] which gave Name to the reft. 2. The Cafpian Streights, thro' which there is a Paffage between the Caspian Mountains. 3. The Paffage thro' the Ridge of the Cordilleras in Peru. 4. The Paffage thro' the Mountains on the Weft-fide of the Arabian Gulph, by which Merchandize is carried from Aby Fenia into Arabia. 5. The two Paffages thro' Mount Caucafus, E^{2} c.

PROPOSITION VII.

When a Mountain runs out into the Sea, or Seems [to Mariners] to overtop the reft of the Country, it is called a Promontory, Cape, or Head-land. T'be mof famous are,

1. THE Cape of Good Hope at the extream Point of Africa, which muft be doubled by thofe that fail into India.
2. C A P E Victory at the further end of the Streights of Magellan.
3. CAPE Verd, the moft weftern Point of Africa, where the Coaft begins to wind towards the Eaft.
4. CAPE Vincent in Spain.
5. THE Promontory of Atlas was, fome Ages ago, called a Head-land by Mariners, becaufe they fuppofed it unpaffable, or that if any failed

Chap. yo, of Univerfal Geography. failed beyond it they could not return fafe; wherefore it was the utmof Bound of their Navigation on the African Coaft. Other Promontories may be feen in Maps.

PROPOSITION VIII.

To Mountains are oppofed Cbafms, decp Pits, and Caves, which are found in fome Places of the Earth.
THERE is a ftinking fulphureous Cave in Ireland, which was formerly very famous, now called St Patrick's Purgatory; and in Italy there is that called Grotta del Cane (f). Leo Africanus mentions one which emits Fire on a Mountain in Fez, called Beni-gua-zeval.

IN Bardefay, an Ifland adjacent to the Principality of Wales in Britain, there is a Rock near the Sea in which there is a Cave, unto which if you apply your Ear, you will hear the Strokes of a Hammer, the blowing of Bellows, and the filing of Iron, as if it were in a Smith's Shop.

N OT far from the Town of Beffe in Aquitain, there is a Cave, called by the Natives Du Souley, in which there is heard a Noife like Thunder in the Summer Seafon.

I N feveral Places there are found among Mountains, Vallies of fuch a prodigious Depth, that they ftrike the Beholders with Horror, and caufe a Giddinefs in the Head.
(f) See Sturmius Pbilof. Exercit. 11. de Terra Mot. Cbap. 3. where fome of the moft eminent Specus's are enumerated, and fome of their Ufes, viz. that they ferve for Spiracles and Funnels to the Countries where they are to vent and difcharge the Damps and Va-
pours which would otherwi $e_{\text {e }}$ being imprifoned, occafion frequent Succuffions, and dreadful Convulfions of the Earth. See the Note above. And for more to this purpofe, fee the PbiloSopbical Tranfaitions, and Frencb Memoirs : pajom.

C H A P. XI.

Of Mines, Woods, and Defarts.

MINES, Woods, and Defarts, make feveral Tracts of the Earth remarkable, of which, tho' but little can be faid, yet it will not be unneceffary for the more perfect Knowledge of the Parts of the Earth's Superficies, to confider thefe Places, and to trace out their Situations, which we fhall briefly do in this Chapter.
PROPOSITION I.

Mines are Places in the Earth, out of which Metals, Minerals, and otber Kirds of Earth are dug.

S O many different Kinds of Foffils as there are, fo many various Names have their Mines, viz. Gold-Mines, Silver-Mines, Copper-Mines, IronMines, Coal-Mines, Salt-Mines, and fuch as produce Gems, छc.

T HE moft celebrated Gold and Silver-Mines, are.

1. T HOSE of Peru, and Caftella del Oro, which are the richeft in the World, yielding Gold and Silver in abundance, and not being deftitute of other Metals; infomuch that the Natives of Peru, and the Spaniards ufed to boaft, that this Kingdom was founded upon Gold and Silver. Girava, a Spani/h Writer

Chap. it. of Univerfal Geograpby.

Writer affirms, that there were formerly Mines about the Town of 2 uito, which produced more Gold than Earth. And when the Spaniards made their firft Expedition into this Golden Country, they found feveral Houfes, efpecially in the Regal City Cufco , which were all covered over within and without with Plates of maffy Gold. And the Officers of the Peruvian Forces, not only wore Silver Armour, but all their Arms were made of pure Gold. The moft rich and advantageous Mine of Silver is in the Mountains of Potof, where 20000 Workmen are daily employed to dig it, and carry it up at leaft 400 Steps. Thefe Mines produce that vaft Quantity of Gold and Silver, which the King of Spain receives out of America every Year, to the Mortification of other Kings and Potentates; and which, he therefore keeps fortified with ftrong Forts and Garrifons.
2. THERE are excellent rich Mines of Silver in the Fapan Iflands, whence they are called by the Spaniards, the Silver Inands. There are alfo fome Mines of Gold found there; but thefe are not fo rich as formerly.
3. THERE were more plentiful Gold-Mines formerly in Arabia, than at prefent.
4. IN the Mountains of Perfia, and in Cbina, there are fome Silver-Mines.
5. I N Guinea there are feveral Mountains, that produce Gold, but they are remote from the Shore, and the Gold-Duft that is brought from thence, is not dug out of the Ground, but gathered up and down by the Natives. Their in-land Kings are however faid to poffefs each his Mine, the Product of which he fells to the Neighbouring Merchants, and they again to others, till it reaches the Sea-Shore, where it is exchanged with the Europeans.
6. IN Monomotapa, there are found rich Mines of Gold and Silver, and alfo in Angola, both which: are thought to be Parts of one continued Vein.
7. GERMANX excels the reft of the Kingdoms of Europe for plenty of Mines, of which fome produce fmall Quantities of Gold, others abundance of Silver, and a great many of them Copper, Iron, Lead, Vitriol, Antimony, \&c. about which confult the Defcriptions of Germany.
8. SWEDEN is enriched with the beft Cop-per-Mine of any hitherto difcovered; it is in a vaft high Mountain, which they call Kopperberg, out of which as much Copper is dug as makes up a third Part of the King's Revenue. Here are alfo Irons Mines, and fome Silver-Mines, but they fcarcely. defray the Expence of digging them.
9. THERE are Mines of precious Stones found in the Ifland of Ceylon, and alfo in Congo (where there is a Silver-Mine, and fo much Marble, that the Earth under Ground is thought to be all Mar: ble) and in Peru, about Portovejo in Smaragdina). and in Guiana, near the Coaft of which there is a fmall Inland, called St Maria, which yields abundance of Gold, even 100 Pound Weight every Year, if we may believe the Dutch. In the Kingdom of Golunda, there is a Mine which yieldeth precious Stones, particularly Diamonds in abundance, but it is not now dug.
10. IN Cbili, there are Mines yielding Gold, Silver, and Gems, but the warlike Inhabitants, fetting more by Iron Weapons than Gold or Silver, have partly killed, and partly driven away the $S p a-$ niards, and demolifhed the Mines that were but newly begun.
11. THE Inand Madagafcar abounds in Iron and Tin, with a moderate Quantity of Silver, a little Gold, but no Lead. Wherefore the Natives value Lead Spoons above Silver ones.

С hap. I . of Univerfal Geography. 161
12. IN the Ifland of Sumatra, it is reported, that there are rich Mines of Gold, Silver, Brafs, and Iron ; and that the King in one Year (viz, 1620) received into his Treafure 1000 Pound Weight of Gold.
13. IN the Pbilippine Iflands, and in Fava, HiSpaniola, Cuba, and others; there are found Mines of Gold, Silver, Copper, and Iron: and in the Mountains of Siam there is got Gold, Silver, and Tin.
14. THERE are Mines of Salt in Poland at Pocbnia, four Miles from Cracow ; (where huge Lumps of tranfparent white Salt are cut out of the Ground) in Tranfluania, in the County of Tyrol in Spain, in Leffer Afia, and in Places near the Cafpian Sea, not far from the River Wolga, over-againft the Inand K_{i} fowat, where the Rulfans dig their Salt and boil it to a more pure Subftance, and after tranfport it to all Parts of Ru/ia, In Cuba, there is a whole Mountain of Salt. All the Mountains in the Ifland of Ormus, at the Mouth of the Perjian Gulph, are of Salt, which may be gathered in any Part of them, in fuch great Quantities, that the very Walls of their Houfes are built of cryftalline Salt. In a Valley in Peru, about eighteen Miles from Lima to the Northward, are found deep and large Pits of Salt, where every one may take away what Quantity he pleafes, becaufe it continually increafeth, and feemeth impoffible to be exhaufted. In Africa there is no other Salt ufed, but fuch as is dug out of Pits, or Quarries, like Marble, of a white, greenifh, or Afh, Colour. All India fetch their Salt from the great Salt-Mines of Bagnagar in Cormandel, \&c. We fhall treat of Salt-Springs in another Chapter.

PROPOSITION II.

A Wood is a multitude of Trees extended over a large Tract of Land, wbich Spring up witbout planting, and grow witbout being cultivated.

SEVER AL Woods produce only one fort of Trees, from which they receive their Names; fo that as there is a great Variety in Trees, there is alfo the fame in Woods, viz. Palm Woods, Oak Woods, Ofier Woods, Beech Woods, \&c. Groves and Forefts, are alfo thus diftinguifhed. Divers Countries, efpecially thofe more remote, produce different Sorts of Woodis. In Africa, about Cape Verd, there are whole Woods of Lemon and OrangeTrees, which the Sailors may pluck for a very fmall Matter. In France, there are whole Woods of Chefnut-Trees: In Ceylon there are Woods of Trees, whofe Bark yieldeth Cinnamon: In the Molucca Inands, there grow Clove-Trees: In the Banda Inlands, there groweth plenty of Nutmegs: In Brazil there groweth a hard fort of Wood, which we call Brazil Wood: In Africa, efpecially in Numidia, there grow Grapes, of which are made Raifins of the Sun: In the Inand Madagafcar, and in other Places of India, there are Trees which bear Tamarinds: In Mount Lebanon there are Cedars, and whole Woods of them in \bar{J} apan; of which they make Mafts of Ships. In Spain, France, and Italy, there are whole Woods of Olive and Myrtle Trees. In Germany there are Woods that produce Fir, Oak, Alder, Beech, Pine, Juniper, Maple, Poplar, Afh, and Elm.

THE moft noted Woods are, the Hercynian Foreft, which formerly overfpread almoft all Germany, and at this Day taketh up large Tracts of Land in feveral Countries, and under feveral Names. The ancient Caledonian Wood in Scotland, with feveral others in other Countries; efpecially in Norway, where there grow more large Trees than in any other Country, and from whence all Europe procures Mafts for their Shipping. Litbuania is alfo overfpread with Woods, and Forefts; from whence large Taxes are raifed for the King of Poland.

> PROPOSITION III.

Defarts are vaft Traits of Land uninbabited by Men.
THESE are of two forts, fuch whofe Soil is barren and unfruitful, properly called Defarts; and fuch whofe Ground is fertile enough, but are neverthelefs faid to be defart, becaufe they are uncultivated by Men. In Mufcovy, and in Places near the Cajpian Sea, along the Banks of the Wolga, there are large Tracts of fertile and fat Meadow Ground, which lie defart and uncultivated; in the former Place, by reafon of it's Plenty, and the Lazinefs of the Inhabitants: And in the later, by the Wars of Tamerlane, when thefe Countries were laid wafte, and depopulated. But fuch as thefe are improperly called Defarts.

THERE are four kinds of Defarts (properly fo called) viz. Jandy Defarts, marhby Defarts, fony Defarts, and beathy Defarts; which laft produce Woods and Forefts in feveral Places, and are more ufeful and eafy to be cultivated.

1. THE Defarts of Africa are almoft all fandy, and there is not any part of the Earth fo much over-run with Defarts. Thofe in Libya furround all Egypt; and are accounted the largeft upon Earth.
2. THE Defarts of Arabia, are fome of them fandy, and others ftony : the greateft is vulgarly called the Sand-Sea.
3. THE Defarts about the Mountain Imaüs. The fandy Defart of [Xamo] in Mongul, where the rich Kingdom of Catbaia formerly was (tho' falliy) fuppofed to be.
4. THE Defarts of Cambodia.
5. THE rocky Defarts of Nova Zembla.
6. THE Defarts of Norzeay, Lapland, Sweden, and Finland.
7. T HE Defarts of Germany, are all Heath; hence thofe in Lunenburg, are called LunenburgHeatb, \&c.

SECT.

S E C T. IV.

Containing HrDROGRAPHr; wbich is explained in fix Cbapters.

C H A P. XII.

Of the Divifion of the Ocean by the Interpofition of Lands.

HAV I N G treated of the Divifion of the Earth, and it's Parts, in the foregoing Chapters; Order requires that we alfo confider the Situation and Divifion of the WATERS, which make the other Part of the Terraqueous Globe, and explain fuch of their Properties as belong to Geograpby.

I N the fecond Propofition of Chapter vii. we divided the Waters into four Species, viz. 1. The Ocean and Seas. 2. Rivers and frefh Water. 3. Lakes and Marfhes. 4. Mineral Waters. In this Chapter we fhall Difcourfe of the Divifion of the Ocean.
PROPOSITION I.

The Ocean, in a continued Extent, encompafetb the whole Earth, and all it's Parts, nor is it's Superficies any wobere interrupted, or altogetber broken by the interpofed Earth; only a larger TraEI of Sea, or a wider Communication is in fome Places wanting.

THE Truth of this Propofition cannot be proved but by Experience, which is chiefly gained
by failing round the Earth, which hath been often attempted and happily accomplifhed; firf by the Spaniards under Capt. Magellan, who firft difcovered the Streights, called by his Name; then by the Englifh, viz. by Sir Francis Drake, Sir Thomas Cavendig, and others; after by the Dutch, \&cc.

THE Antients never doubted that the Ocean was thus continued; for they fuppofed the old World to be raifed above the Waters, and every where furrounded thereby (and fome of them thought it floated). But when America was difcovered (which is extended in a long Tract from North to South, and feems to hinder the Continuation of the Ocean) and alfo the Arctic and Antarctic Continent, then they began to think otherwife; for they imagined, that America was joined to fome Part of the South Continent (which was not unlikely) in like Manner as moft of our modern Geographers, fuppofe that Nortb America is joined to Groenland. If both thefe Conjectures had been true, then indeed the Ocean had not encompaffed the whole Earth. But Magellan removed all Doubts and Scruples about it, by difcovering, in the Year 1520, the Streights between America and the South Continent, which join the Atlantic to the Pacific Ocean. What therefore the Antients happened to ftumble upon, by a wrong way of arguing, we have found out to be a real Truth by Experience. The fame may be faid about Africa; for the Antients, without any Hefitation, fuppofed it to be bounded to the Southward by the Ocean, and not to be extended fo far beyond the Equator, as it really is; but when the Portuguefe had failed along the weftern Coaft of Africa, and found it to be extended a great way beyond the Equator, it was queftioned whether Africa could be failed round (fo far as to afford a Paffage to India), that is, whether Africa was extended Southward or

Снар. 12. of Univerfal Geography.

 encompaffed by the Ocean. But this Doubt was alfo removed by Vafco di Gramma; who, in the Year 1497, firft failed round the moft fouthern Promontory of Afric, called, The Cape of GoodHope ; which Name it had received from Yobn II, King of Portugal, in the Year 1494, when Bartbel Diaz (who firft returned from it, tho' he did not double the Cape for want of Provifion, and by Reafon of tempeftuous Weather) had given him a large Account of the ftormy troubled Sea about this Promontory:
PROPOSITION II.

The Ocean, taken altogetber, is formed by the Land into feveral Portions, of which there are tbree Species, viz. 1. Oceans, or great Seas. 2. Bays or Gulpbs. 3. Streights.

1. THE Word Ocean is taken in a double Senfe, fometimes for that general Collection of Waters which furround the whole Earth; and very often for a Part of that Collection, which is joined on both fides to other Parts by broad Tracts. Thus we fay, The Allantic Ocean, The German Ocean, The Etbiopic Ocean, and Indian Ocean. We fhall here ufe the Word Ocean fometimes in the later Senfe according to Cuftom, inftead of Sea; which alfo is a Part of the whole Ocean, becaufe the Word Sea is often ufed in a fomewhat different Senfe, as will be fhewed by and by.
2. A B A Y, or Gulph, is a Part of the Ocean which flows between two Shores, and is every where environed with Land, except where it communicates with other Bays, or the main Ocean. It is very often called a Sea.

A STREIGHT is a narrow Paffage, either joining a Gulph to the Neighbouring Ocean, from what tollows.
PROPOSITION III.

The main Ocean is divided into four large and particular Parts, which are alfo each of them called Oceans, and anfwer to the four Continents, or great Iflands of the Earth. Thefe are,

1. T HE Atlantic Ocean, which is placed between the weftern Shore of the old World, and the eaftern Shore of the new World. It is alfo called the weftern Ocean, becaufe it lieth to the weftward of Europe. It is beft divided into two Parts, by the Equator; whereof the one is contiguous to the Hyperborean Ocean1, the other to the Icy or South Sea.
2. THE Pacific Ocean, or great South Sea, which is placed between the weftern Shore of America and Afia, and is extended to Cbina, and the Pbilippine Illands.
3. THE Hyperborean, or northern Ocean, about the ArEtic Continent.
4. THE fouthern Ocean, about the South Continent, of which the Indian Ocean is a Part.

OTHER Geographers divide the main Ocean into four Parts, after this Manner: They make the Atlantic one Part, but do not extend it beyond the Equator, where they begin the Etbiopic: They alfo reckon with us the Pacific, and add thereto the Indian; but we, in our Divifion, have more regard to the four great Continents. Some make but three Parts, viz. the Atlantic, Pacific, and Indian; but then they extend the Atlantic further. Let every one ufe what Divifion he likes beft, it is

Chap. 12. of Univerfal Geograpby.
no great matter which; for thefe are not made by Nature, but contrived by the Fancy.

PROPOSITION IV.

Some Parts of the Ocean borrow a Name from the Countries which they bound.

T HUS we fay the German Ocean, the Briti/b Sea, the Indian Ocean, the Gulph of Venice, \&c.
PROPOSITION V.

Some Bays are oblong, otbers broad; fome primary, and others fecondary; the former flow out of the Ocean, the latter out of fome otber Bay: and fuch may be called Arms or Brancbes. The oblong are,

1. THE Mediterranean Sea, which breaks out from the Ocean, between Spain and Barbary; and runs a long fpace between Europe and Africa, even as far as Syria, Afia-minor and Tbracia. The entrance is called by way of Eminence the Streights. Hence to fail up the Streights, is to vifit by Sea, Italy Greece, Syria, Sicily, Venice, and the reft of the Countries that lie upon the Coaft of this Bay.

THERE are feveral fecondary Bays, or Arms, which proceed from it, viz. the Adriatic, Sea, or Gulph of Venice, the Arcbipelago, \&c.

IT may be reafonably enquired, whether the Euxine Sea be a Part of this Bay. Of which fee Chap. xv.

THE Mediterranean hath divers Names from the feveral Coafts it reaches; on the North it hath Spain, France, Italy, Sicily, Sclavonia, Greece, Candia, Romania, Afia-minor; on the South it hath Morocco, Fez, Tunis, Tripoli, Egypt. From whence it is called the Gulph of Lyons, the Tufcan Sea, the Ionian

Ionian Sea, the Levant, \&c. It is extended from Weft to Eaft, and receives into it many Rivers.
2. THE Baltic (or Eaft Sea, improperly fo called) breaketh out from the Ocean between Zeeland and Gotland, part of the Continent of Sweden, and alfo between Zeeland and Futland, from whence it flows a long way to the South-Eaft, and afterwards winding to the northward, it reaches a prodigious length between the Provinces of Mecklenburg, Pomerania, Courland, and Livonia, on the Eaft; and on the Weft, Sweden and Lapland. It fends out two Arms, viz. the Botbnic Bay, and the Gulph of Finland; to which may be added the Livonian Sea, or Gulph of Riga. It receiveth feveral great Rivers.
3. T H E Arabian Gulph, or Red Sea, floweth out of the Indian Ocean between Aden, a Town in Arabia, and Cape Mufledon in Africa, having Africa on the Weft, and Arabia on the Eaft. It runs to the Eaftward as far as the Ifthmus of Africa, to the Town of Suez, where there is a Harbour for the Turki/b Fleet, and receiveth only a few fmall Rivers, but not one out of A frica. It is extended from the South-Eaft to the North-Weft.
4. THE Perfian Gulph [or Gulph of Balfora] floweth out of the Indian Ocean, near the Ifland of Ormus, from the South-Eaft to the North-Weft, between Perfia on the Eaft, and Arabia on the Weft, as far as the ancient Cbaldaa, where it receiveth the Eupbrates and Tigris, joined a little before in one Chanel ; but few Rivers of note befides.
5. THE Gulph of California, or Red-Sea, runs from South to North, between the Weft of Mexico in America and California, and ends at Tatonteac, an unknown Part of America. Modern Difcoverers will have California to be an Inand; and this not to be a Gulph or Bay, but a Streight or Sea (a).
(a) Sec Note (e) Chap. viii.
6. THE

Снар. 12. of Univerfal Geography. 171
6. THE Gulph of Nankin [or Gang] runs northwards, between Corea and Cbina, towards Tartary, where fome place Tenduc, in the Kingdom of Catbaia: others will have Corea to be an Inand. It receiveth but a few Rivers.

T O thefe may be added feveral leffer Bays, fuch as the Gulph Cambaya, \&c. Only the two firft of thefe, viz. The Mediterranean and the Baltic, afford fecondary Bays.

PROPOSITION VI.

The broad and open Bays are feven in Number, viz.

1. THE Gulph or Sea of Mexico, which flows out of the Atlantic Ocean from Eaft to Weft, between North and South America, where it is ftopped by the long Ifthmus that joins thefe two Continents, and feparates the Atlantic from the Pacific Ocean. It receiveth a great many Rivers and for Multitude of Iflands may compare with the Arcbipelago.
2. T H E Gulph of Bengal, or Ganges, ftrikes out from the Indian Ocean, towards the North, between India and the Peninfula of Malacca; it is bounded by Orixa, Bengal, Pegu, \&cc. Kingdoms of India, and receives, befides the Ganges, a great many famous Rivers.
3. THE Bay of Siam, between Cambodia and Malacca, is extended northward to the Kingdom of Siam.
4. THE White-Sea, or Ruffian Gulph, flows from the Northern Ocean towards the South, between Lapland, and the remote Shores of Ruflia. It ftretcheth out an Arm towards Lapland, and endeth at Arcbangel in Mufcovy; which is a Mart much frequented by the Engli/h and Dutch. It receives Several great Rivers.

5. THE

5. THE Lantcbidal Sea, is a Bay between [New Holland] and Nero Guinea; two Peninjula's of the South Continent. It is extended Southward, and terminated at Carpentaria.
6. THERE is another Gulph a little to the weftward of the laft, between [Nuyt's Land] and Van Diemen's Land (two Sea Captains, by whom thefe Parts were difcovered).
7. HUDSON's Bay is bounded by New Britain, New France, New Denmark, \&c. and runneth out of the Northern Ocean. To which may be added, Bafin's Bay, the Bay of Bifcay, \&xc.

PROPOSITION VIİ.

Streigbts eitber join the Ocean to the Ocean, or the Ocean to a Bay, or one Bay to anotber.

OF Streights we reckon fifteen, viz.

1. T HE Streights of Magellar, tho' they may yield to others for Antiquity, are neverthelefs, accounted very famous for their exceeding lorg Reach, thro' which there is a free Paffage from the .Atlan. tic to the Pacific Ocean. The Streight is in Length, from Eaft to Weft one Hundred and ten Leagues; but the Breadth is various, in fome Places two Leagues, one League, and in fome Places but a quarter of a League. Magellan firft difcovered it, and failed thro' it in the Year 1520, Tno' it is reported, that Vajcus Numnius of Valboa, had before (viz. in the Year 1513) taken notice of it when he failed that Way, to make Difcoveries to the Southward. It leth in 52 degr. 30 min . South Latitude, between Patagon, a Part of South America on the North, and the Inands of Terra del Fuego on the South.
2. A little further, to the fouthward, are the Streights of Le Maire, which are much fhorter than thofe

Снер. I2. of Univerfal Geography. thofe of Magellan. They have a Part of the South Continent on the Eaft, and the Iflands of Terra del Fuego on the Weft. A Paflage is more expeditiounly made thro' thefe into the great South-Sea, than the other. They lie in 54 degr. 30 min. South Latitude.
3. THE Streights of Manila, between Luconia and Mindanao, and others of the Pbilippine Inands, are faid to be one hundred Leagues in Length, and are a very dangerous Paffage to Ships, by reafon of dreadful Quick-fands in feveral Places. They are extended from Eaft to Weft, and join, in part, the Pacific to the Indian Ocean, which are alfo not far from thence, joined by broader Streights in many Places.
4. THERE are feveral other Streights among the Indian Ines, and between them and the Continent ; as between Ceylon and India; between Sumatra and Malacca; between Sumatra and Fava, \&c,
5. THE Streights of Waygats, thro' which there is fuppofed to be a Paffage from the Ruffian or North Sea, into the Tartarian Ocean; but it is fo fhut up with Ice, that it never could be failed thro' by the Europeans (b). It lies between Samoieda and Nova Zembla.
6. THE IcySea, between Nova Zembla and Spitzbergen, or New Greenland.
7. DAVIS's Streights, between North America and Greenland, have not been yet failed thro ; therefore we are in a doubt, whether it be a Streight or a narrow Sea.
8. FOR BISHE R's Streights, which afford a Paffage from the Allantic Ocean into Hudfon's Bay.
9. THE Streights of Anian, between North America and Tartary in Afa, through which there is faid to be a Paffage between the Tartarian Qcean,

[^8]and They who have failed in that Part of the Pacific Ocean pretend to be certain, that there are Streights, or Sea, both between America and Tartary, and alfo between America and Greenland, by reafon that for feven hundred Leagues from Fapan towards North America, the Currents fet ftrongly from the North North-Weft, tho' the Wind be variable, and blow from other Points of the Compafs: but when they are come within one hundred Leagues of Nero Spain, thefe Currents ceafe, and others flow to the Northward, as if it were to fome broad Sea on the North of Nere Spain. Alfo in thefe feven hundred Leagues failing, Whales are daily feen, and other forts of Fifh, that are known to delight in Streights and narrow Seas, which it is probable, come from the Streights of Anian, to that Part of the Pacific Ocean; becaufe they are not found elfewhere (c). However, feveral of our modern Geographers take no notice of thefe Streights, but place a vaft unknown Ocean, between Tartary or Corea and America.
10. THE Streights of Gibraltar, thro' which the Atlantic Ocean gufheth into the Mediterranean Sea. They lie between Spain and Africa, and are about two Leagues over at the ftraiteft Place, but much longer. The Ancients believed that there
(c) It is certain the Sea of Cores and Fapan, is annexed to the Tartaric Ocean, and allo to the Sea of Greenland; becaufe that fome Hollanders af firm, (who weré fhipwrect'd upon Corea, a Peninfula of Cbina) that they faw there a Whale, upon whofe Back fluck a Harpon Iron of Gafcony, which not being queftioned by any, it is moft probable to be conjectured, that this

Whale paffed from Spitiberg thro' the neareft Arm of the Sea, rather than thro' the more remote. But be it how it will, we may hence fafely conclude, that the Sea which lies beyond Fapan and Spitsberg', is paffable; and thro' more perhaps than one Arm or Chanel, by which they communicate. See Note (a) Chap. viii. and Pbilof. Tranfact. abridged by Lowotbarp. Vol. iii. Page 612. were no fuch in the firft Ages of the World, but that they were made by the breaking in of the Sea upon the Land.
i I. THE Streights of Denmark [or the Sound] lie between Zeeland and Scbonen, thro' which the Atlantic, in part, flows into the Baltic, where they are ftraiteft. They are about half a German Mile over. Near to this there are two other fmall Streights, the one between Zeeland and Funen, and the other called the Belt, between Funen and futland.
12. THE Streights of Babelmandel, at the Mouth of the Arabian Gulph, near the Sea-Port Aden, thro' which there is a Paffage out of the Indian Ocean into the Red-Sea.
13. T HE Streights [of Ormus] at the Mouth of the Perfian Gulph, are not properly fo called, becaufe they are but little narrower than the Gulph itfelf.
14. T HE Hellefpont, a Streight famous among the Grecians, thro' which there is a Paffage from the Arcbipelago to the Propontis; near to this there is another narrow Sea, called the Tbracian BoJpborus, which joins Propontis to the Euxine Sea.
15. T HE Faro, or Streights, of Mefina, between Italy and Sicily.

M A N Y have been of Opinion, that there were Streights fomewhere northward of Virginia, which is in 40 degr. North Latitude, whereby the Atlantic is joined to the Pacific Ocean, and thro' which they might find a free and open Paffage to Cbina, and the Pbilippine Inlands: but this, in the Year 1609, was in vain attempted thro' Hudjon's Streights.

THUS have we explained and pointed out the Parts of the Ocean, diftinguifhed by the Situation of the Land, in like manner as in Chapter viii, we defcribed the different Plans of Countries, occafioned by the breaking in of the Ocean. That the Geographer
grapher may keep all thefe in his Memory, it will not be unferviceable to him to trace out the Perimeter of the Sea Coaft, and to take a tranfient View of the Shores and Bounds of each Country, and alfo how they are fituated, and joined one to another.

PROPOSITION VIII.

[Go trace out the Sea Coafts, tbat environ the four Quarters of the Earth, viz. Tbe old and newWorld, and the North and South Continent.]

1. THE old World, (comprehending Europe, Afia, and Africa,) is extended northward to the Streights of Waygats, adjoining to Samoieda; upon the Weft of which is the Kingdom of $\mathrm{Mu} \mathrm{COO}_{-}$ vy, where the White Sea is received into a large Bay from the North; on the further Side of which is Lapland, and next to that, on the Weft, Norway, whofe Shore runs North and South; then winding to the Eaft, we came to the Shore of Gotland and Scbonen, where there is a Gulph that receiveth the Baltic Sea, which is bounded by Sweden, Finland, Livonia, Pruflia, Courland, Pomerania ${ }_{7}$ Mecklenburg, Holfein, and futland; then turning fouthward on the further Side of Futland and Holfein, we find the Shores of Wefpbalia, Holland, Flanders, France, and Spain; where there is another Inlet that receives into a vaft Bay the Mediterranean Sea, which is hemmed in by Spain, France, Italy, Sclavonia, Greece, Romania, Afia minor, Egypt, Barbary, and Morocco, over-againft the Spanibs Shore; then we turn along the Weftern Shore of Africa, to Cape Verd; and from thence the Shore bends eaftward along Guinea, and fouthward by Congo and Angola, to the Cape of Good Hope; where it is again reflected northward, and gives Bounds to Sofala, Zam.
guebar, and [Anian]; here the Arabian Gulph, or Red-Sea, is extended to Egypt, which is joined to the Arabian Shore, and to the Shores of the Perfian Gulph: upon the Eaft of thefe, are the Shores of Perjia, Cambaya, Indoftan, Malacca in India, Bengal, Cambodia, Cbina, Tartary at Corea, to the Streights of Uries; where follow the unknown Coaft of Northern Tartary, and the Samoieds, which is [very likely] joined to the Streights of Waygats, where we began.
2. $A M E R I C A$ is thus encompaffed by the Ocean. On the North at the Streights of Davis, there is Hudjon's Bay, from whence follow in order to the fouthward the Shores of Nerv-Britain, NewEngland, New-France, Virginia, Florida, Mexico, and New-Spain, on the Ifthmus; then Nerw-Cafle, Guinea, Brafil, and Patagon, at the Streights of Magellan, where the Shore from running fouthward begins to turn towards the Weft; thence from South to North are extended the Shores of Cbili, Peru, New-Spain and New-Mexico, which is bounded by the Gulph of California; [where follow the unknown Shores of Mozembec, \&c. (bounded perhaps by the Streights of Anian) which may be contiguous (for any thing that we know) to thofe of Davis's Streights.]
3. THE ArEtic Continent is extended to Davis's Streights, and from thence begin the Shores of Greenland, which run a little to the South, and then return northward to Spitberg, where they are called the Shores of New-Greenland: thefe are ftretched out over againft Nova Zembla, and the North of Tartary; from whence the reft of the Shore to Davi's Streights is unknown.
4. THE South Continent ftretches to the Streights of La Maire, whence the Shore is perhaps continued to Nero-Holland, where the Lantcbidol Sea is received into a Gulph, on the other VOL. I.

Side

178 Tbe Abfolute Part Sect.IV.
Side whereof is N_{e} w Guinea, which [very probably] is contiguous to the Shores at the Streights of La Maire.

LET us now trace out the Perimeter of the Ocean. Between Davis's Streights, and Nova Zembla there is the northern Ocean, and Icy Sea, or Sea of Greenland; which is continued till between Europe and America, where it is called the Germars Ocean, the Briti/b Ocean, the French and Spani/b Ocean, and, in the whole, the Atlantic Ocean; (and maketh three Bays, viz. the Mediterranean, the Baltic, and the Mexican Gulph) which, when it comes between the Coafts of Africa and Brafil, is called the Etbiopian Sea on the one Hand, and on the other the Sea of Magellan: further to the Eaft, between Africa and the South Continent, is the fouthern Ocean, and between Afia and the fame Continent the [eaftern or] Indian Ocean; alfo between Afia and South America is the Pacific Ocean [or great South Sea] which is extended northward to the Streights of Waygats and Anian, and fouthward to the Streights of Magellan [and La Maire] by which it is joined to the Atlantic. It goes under feveral Names along the Coaft of America, as the Sea of Cbili, Peru, Mexico, California, \&xc.

The Terraqueous Globe is divided into Land and Water. Again Water is divided into the main Ocean, Lakes, Moraffes, and Rivers. The main Ocean is formed by the Earth into three forts of Portions.

1. The Ocean, wbofe prime Parts are four.
2. The

Снар. 12. of Univerfal Geograpby.

1. The Atlantic [or
weftern Ocean] with
the Etbiopic Sea, be-
tween Europe and $A-S$ The Britannic Ocean,
frica on the one Hand, $\{$ The Germian Ocaan, and Anerica on the o- CThe Spanifb Ocean, E c. ther. It obtains vari-
ous Names from the
Places it watereth, viz.
2. THE Pacific Ocean, or great South Sea, between the furthelt Parts of A/fia and the Iñdian Iflands; on the one hand; and the weftern Shore of America on thie other.
3. THE northern Ocean, about the Arcric Continent, fometimes called the Icy Sea, Tartarian Ocean, Esc.
4. THE fouthern Ocean, about the Antarctic Continent, a Part of which is the Indian Ocean. 2. Bays or Gulpbs.

E \quad I. The Gulph of Mexico, between North and South America.
5. The Gulph of Bengal, between Indoftan and Malacca.
6. The Bay [of Siam] between Malacca and Cambodia.
7. The White Sea, between Lapland and Mufovy.
8. The Lantcbidol Sea, between New-Holland and New-Guinea.
9. The Gulph between Nuyt's Land, and Van Diemen's Land.
10. Hudjon's Bay; between New-France and Nece-Denmark.

> 3. Streigbts.

1. THE Streights of Magellan, which join the Allantic to the Pacific Ocean. Thefe are longer than any of the reft.
2. THE Streights of La Maire near thofe of Magellan, and of the fame ufe.
3. THE fuppofed Streights of Anian, which join the Pacific to the Tartarian Ocean.
4. DAVIS's Streights which join [Baffin's Bay] to the Atlantic, near which are Forbibers's Streights.
5. T HE Streights of Waygats, which join the Icy Sea, perhaps, to the Tartarian Ocean, if the Ice do not interpofe.
6. THE Streights of Gibralter, which join the Atlantic to the Mediterranean Sea.
7. THE Streights of Denmark, or the Sound, join the Allantic to the Baltic.
8. T H E Streights of Babelmandel, at the mouth of the Arabian Gulph.
9. THE Streights of Ormus, at the mouth of the Perfian Gulph.

Сн AP. 13. of Univerfal Geography.
10. THE Hellefpont and Bofpborus, which join the Arcbipelago to the Euxine or Black Sea.

WHETHER the Cafpain Sea be a Lake or a broad Bay, which is joined to the main Ocean by fome fubterraneous Streights, is not fettled among Geographers.

20 (2) Nove

C H A P. XIII.

Of the Ocean, and certain Properties of it's Parts.
PROPOSITION I.

The Surface of the Ocean, and of all otber Liquids, is round and Jpherical: Or the Surface of the watery Part joined to the Surface of the dry Part, do botb togetber make up the Superficies of the terraqueous Globe.

THE Truth of this Theorem is proved from the Arguments ufed in Chapter iii. to prove the fpherical Figure of the Earth, for they hold as well here as there; but becaufe thofe Proofs are chiefly built upon the Phænomena that are reafonably fuppofed to proceed from fuch a Figure, that is, rather from the Effects than the Caufe; we fhall propofe, in this Place, a Demonftration which is wholly founded upon natural Caufes, and by which Arcbimedes proved the Superficies of all liquid Bodies to be fpherical: in order to which he

182

The Abflute Part SECT. IV.
took for granted the three following Portulata: 1. That the Earth hath a Center, and is therefore Pherical. 2. That it is the Nature of all Liquids, whofe Parts are contmued and lie at equal Diftances from the Center, that the Parts lefs preffed are expelled from their Places by thofe that are more preffed, as is manifeft from Experience. 3. That every Part of the Liquid is preffed by that Part which is above it, perpendicularly towards the Center of the Earth, if the whole be defcending, or is preffed by any other Body. Befides thefe Poftulata, Archimedes ufes a Geometrical Propofition which is not found demonftrated any where in the Elements; and therefore he demonftrates it himfelf, which is this: If a Superficies be cut by feveral Planes, all paffing thro' one 'Point, and each Section be the Periphery of a Circle, whofe Center is that one Point, then will the Superficies be fpherical, and that Point the Center of the Sphere ; as is eafily demonftrated.

L E T' the Superficies of any Body be cut by the Plane IF K EP P (Fig, 16.) thro' D, and let the Perimeter of the Section IF KEP be circular, having D for it's Center ; alfo let every other Section, made thro' D, have circular Perimeters, and D for their Center. It is to be fhewn, that the Superficies of this Body is fpherical, and that D is it's Center ; i.e. that all the Points in the Superficies are equidiftant from D. For we may imagine feveral right Lines to be drawn from D to other Points of the Superficies, and we mutt prove them to be all equal. We máy fuppofe a Plane to pafs thro any of them drawn from D to the Superficies, and alfo thro' DF (for two right Lines cutting one another, or meeting, are in the fame Plane by Euclid Lib., ii. Prop. 2.) and the Periphery of the Section will be circular by the Hypothefis; therefore, the fuppofed Line

Chap. 13. of Univerfal Geography.
drawn will be equal to DF , and fo will all other Lines drawn from D to the Superficies be in like manner equal to DF (a). Hence we prove the Superficies to be fpherical, having D for it's Center (b). This being premifed, the Superficies of all Liquids are thus demonftrated to be fpherical. Let us fuppore a Liquid at Reft, in the form of EF GH, (Fig. 17.) and let the Earth's Center be D , and imagine this Liquid to be cut by a Plane paffing thro' D , fo as the Section may be repreFented in the Superficies by EFGH. We are firft to prove that this Line EFGH is circular, or an Arch of the Periphery of a Circle, whofe Center is D. If it were poffible not to be circular, then would two Lines, drawn from D to it, be unequal. Let the unequal Lines DE, DG be drawn, viz. let $\mathrm{D} G$ be greater than DE , alfo let the one be the leaft, and the other the greateft that can be drawn from D. Then draw another right Line DF to E F G H, bifecting the Angle GDE, fo as to be longer than D E, bit fhorter than D G. With this DF as a Radius upon the Center-D, defcribe in the fame Plane the Arch I F K H, which will cut the Line DE produced in the Point I, and the Line DG on this Side G, in the Point K.

LIKEWISE with the Radius DL, fomething lefs than DE, upon the Center D, defcribe the Arch LMN within the Liquid in the fame Plane IF KH. Then are the Parts of the Liquid within the Arch L M N continued, and at equal diftances from the Center D: but the Parts between MN are more preffed than thofe between L.M, having above them a greater Quantity, and therefore a greater Weight of Water.

[^9] being lefs preffed, are driven out of their Places by thofe within M N which take them up, and put the Liquid in Motion. But it was before fuppofed to lie in this Form at Reft, and ftill: So that the Liquid, by this, will be both at Reft and in Motion, which is inconfiftent. Wherefore the right Lines, drawn from D to EFGH, are not unequal, but equal; and fo the Line EF G H is an Arch of a Circle, whofe Center is D. The fame may be demonftrated in all Planes cutting the Superficies of the Liquid, and paffing thro ${ }^{*}$ D, viz, that the Section is an Arch of a Circle whofe Center is D. Therefore fince, in the Superficies of Liquids, all Planes paffing any how thro' D, are found to produce circular Sections, it will follow, from the foregoing Propofition, that the Superficies of all Liquids is fpherical ; having the Point D, that is, the Center of the Earth, for their Center; as will more manifeftly appear from the Proof of the following Propofition.

PROPOSITION II,

The Sea is not bigber than the Land, and therefore the Earth and Water are almoft every where of the fame Altitude, bigh Mountains excepted.

THE Truth of this is demonftrated by the preceeding Propofition. For if the Superficies of the Ocean be fpherical, and have the fame Center with the Superficies of the Earth, and alfo if the Sea, near the Shore, be no higher than the Land, neither will the middle of the Ocean be elevated above the Earth, becaufe both their Surfaces make up the Superficies of one and the fame Sphere. But fome perhaps will not believe the former Propofition, by Reafon of the affumed Hypothefis ;
therefore therefore we fhall fhew the Truth of this Theorem, without that, from it's known Effects.

1. WE know, by Experience, that Water, if it is not hindred, will flow from a higher to a lower Place. If therefore there were about the Shore any Place lower than the middle of the Ocean, the Water would continually fettle from thence towards the Shore, and be always flowing, and in Motion ; but the contrary is obferved when the Weather is calm.
2. IF the Ocean, far remote from the Shore, was much higher than the Sea Coaft, it might be feen at a greater Diftance than if it were fpherical, even over all the intervening Parts that were of a lefs Altitude. But Experience fheweth to the contrary, that when we come from the Inland Parts nearer the Shore, we difcover by little and little the more remote Parts of the Sea, and the nearer we approach the Shore, the further we can fee upon the Ocean, Therefore the remote Parts of the Ocean are not elevated above the Sea Coaft, but are of the fame Altitude with them and the Earth.
3. SAILORS cannot difcover any Difference between their Altitude, at the Sea Coaft, and in the middle of the main Ocean, tho' they ufe the moft accurate Inftruments; which certainly they might, if the remote Parts were elevated above the reft, as a Tower, or a Mountain. For as we can find the Altitude of a Mountain, or Tower, above the Places of Obfervation by Inftruments, fo might they (if there were any) find the fuperior Altitude of the middle of the Ocean above the Parts next it, by fuch accurate Inftruments as are now in Ufe.
4. THERE are found, in reveral Places, great Numbers of Inlands, which are, fome of them, extended far into the main Ocean, and fore no Part of the main Oceain is higher than the Land; becaufe it is not higher than the Shores of thefe Iflands.
5. THE Waves upon the Ocean never keep long upon a Heap, but are naturally diffufed 'till they make a fmooth Surface: wherefore it is unreafonable to fuppofe, that the Water fhould be heaped up towards the middle of the Ocean.
6. IF the Waters in the main Ocean are higher than the reft, why do they not flow into the Chanels of the Rivers, whofe Waters are more depreffed? for we find, by Experience, that Water naturally flows from the Place where it is, to any other that is lower, which is the Caufe of fo many Inundations.

FR OM the whole I think it fufficiently appears, that the Sea is not higher than the Shores; and but very few Shores are elevated to the Height of the Inland Parts, for thefe are often obferved to rife gradually above the other, 'till they become high Mountains: from whence we conclude that no Part of the Ocean is higher than the Superficies of the Earth. That the Inland Parts are more elevated than the Sea Shores, appears affo from the Rife and Currents of Rivers, which, for the moft part, break out, and are directed, from thefe Mediterranean Places, towards the Ocean. Thefe Places therefore are higher than the maritime Parts, becaufe they pour down their Waters upon them. Not but that there are fome Countries which are fituated a little lower than the Surface of the Ocean, but then they are defended either by the Altitude of the Shores, or by Banks, or long Ridges, of interpofed Ground. Some Countries alfo are not fenced with Banks, becaufe they fear a calm and fettled Sea fhould overflow them, but left, when it is ruffed with Winds and made impetuous,

> Chap. 13. of Univerfal Geograpby. 187 impetuous, it fhould violently break in upon them.

COROLLART.

IT is therefore in vain to tell us, that the Sea is higher than the Land, and that by a miraculous Providence it is kept from overflowing the whole Earth, and caufing another Univerfal Deluge; for we have fhewed, that both Land and Water are included within our fpherical Superficies, and that mott Parts of the Earth, at leaft the Shores are higher than the middle of the Ocean, which for that Reafon cannot overflow Countries, or caufe a Deluge, unlefs the Shore or ${ }^{3}$ Banks are wafted, and their Height diminifhed, or a greater Quantity of Water force them open, or overpower them, and then indeed there may happen an Inundation. Neither is it impoffible, or contrary to Nature, that the whole Earth by fuch Means might be overflowed, as will be made evidently appear at the End of this Chapter.

PROPOSITION III.

Why the Ocean, seen from the Sbore, appears to rife and swell to a greater Altitude, by bow mucb the more remote it is.

THIS is a Deception of Sight, or to fpeak more accurately, in the Eftimation, which hath brought many into an Error, and by which divers have fuppofed the Sea to be in fome Places feveral Furlongs higher than the Land. But it is a wonder they have never taken notice of a common Experinent, which is to be met with every Day, whereby this Fallacy is eafily detected. If we look upon a long Pavement, or Area, or upon a row of Pillars,

Pillars, the Parts that are remote, will appear higher than thofe that are near, and the whole Pavement, or Area, will feem to be elevated by little and little, as it's Parts are more remote from us, notwithftanding, in Truth, it be every where of the fame Altitude. After the fame manner we eftimate the Height of the Sea; for if we take a levelling Inftrument, and obferve from the Shore the remote Parts of the Sea, we thall find it not to be elevated above us, but rather depreffed below the Horizon where we ftand.

THE Caufe of this Deception is thus explained from Optics. Let the Eye at A obferve a Pavement, or the Superficies of the Water, a pretty way extended a e (Fig. 18). Let the Angle a A e be divided into four equal Parts, or Angles $e \mathrm{Ad}, \mathrm{dA} c$, $c \mathrm{~A} b, b \mathrm{~A} a$, by the right Lines $\mathrm{A} b, \mathrm{~A} c$, Ad There will divide the right Line $a e$ into four unequal Parts, $a b, b c, c d, d e$, of which the more remote will be the largeft, as appears by the Figure, viz. E d larger than $d c$, and $d c$ larger than $b c$, and $b c$ than $a b$. Altho' thefe Parts are very unequal, yet, by a Deception of the Sight, they will be judged to be all equal, and at an equal Diftance from the Eye; fo that $\mathrm{A} b, A c, A d, A e$, will feem to be Af, A $g, \mathrm{~A} b, \mathrm{~A} k$, where $a f, f g, g b, b k$, are equal; and thus the Parts $b c, c d$, de, feem elevated, as if they were $f g, g b, b k$.
$O R$ horter thus. Becaufe the Eye is raifed to fee things at a Diftance, and depreffed to yiew things near, therefore things at a Diftance feem elevated, and things near depreffed. Or becaufe we meafure the Diftance of the Parts that are near by the elevation of our Eye, and therefore they feem low; but we cannot do fo by the Parts at a Diftance, and therefore they feem not low, but raifed more than they really are. feem to be raifed above the Shore, and the more the further off, yet we are not to think that it is really fo.

SOME imagine the Ocean to be higher than the Earth, becaufe unlefs it was fo, they think it impoffible that Water fhould flow from it to the Heads of Rivers (which are commonly placed very high in inland Countries) fince it never flows, but from a higher to a lower Place. But we fhall difcufs this Point, when we treat of the Origin of Springs.

O T HERS may infer, that the Pike of Teneriff is not fo high as to be feen on the Ocean at fo great a Diftance as fixty German Miles, or four Degrees, unlefs either the Foot of the Mountain, or the Ocean itfelf, be higher than the Sea upon the Coaft of Teneriff; the like may be faid of other Mountains. What is to be anfwered here appears from Chapter ix. where we treated of the Altitude of Mountains.
PROPOSITION IV.

To explain the Caufe and Origin of Bays and Streigbts.
BAYS, properly fpeaking, are in the Earth and not in the Sea, and therefore they ought to be called the Arms, Branches, or procurrent Parts, of the Ocean. For thofe are more properly called Bays of the Ocean, where it receives Peninfula's, fuch as Malacca, futland, \&x.

BUT cuftom hath obtained that the word Bay, fhould, contrary to it's Signification, belong to the Ocean, and be the fame as an Arm or Branch of $i t$.

THESE Bays or Gulphs are thus produced. When a part of the Sea Shore is by fome external

Caufe

Caufe fhattered and rent in two, fo as to leave an Opening, whofe Surface is lower than the Surface of the Ocean, the Water naturally gurheth in between the Cliffs, and is not flopped till it meet with more elevated Ground, by which it is bounded, and formed into a Bay.

STREIGHTS are from this Caufe alfo produced.

THE reafon why thefe Parts are now and then fo miferably torn in Pieces, as to admit Inundations (by which Bays and Streights are formed) is the impetuous Motion and violent dafhing of the Waves againft the Shore, being forced by Winds, or fome other Caufe, almoft daily, to wafh away and wafte them : whereby, in procefs of time, the Earth is broken and disjoined, and made unfit to refift the rufhing of the Ocean. But this is more likely to happen if the Shore be low, and confift of loofe and crumbling Earth, eafy for the Sea to work upon, which will with fmall refiftance burft, and make room for a whole Bay of Water.
IT is manifeft, that fome new Bays and Streights are thus produced, but we murt not thence conclude, that all which are at this Day found in the Earth were fo generated: for it is very likely, that a great many of them are of the fame Date with the Earth and Ocean; and the rather, becaufe none, nor any thing like them, have been produced in the memory of Man. Tho' the ancient Grecians have fuch Fables; and tell us, that the Mountain Calpe upon the Spanibs Shore, and Abyle in Africa were formerly joined, but afterwards feparated by Hercules ; from whence thefe Mountains were called Hercules's Pillars, and the Streights; Hercules's Streights (a).
(a) There are a great many veral other Reafons, to induce Teftimonies of Authors, and feus to believe, that Britain was not

Chap. 13. of Univerfal Geograpby. Igr
IT was a common Opinion of the Aricients, that the Streights between Italy and Sicily, were made by the Irruption of the Sea, which we do not fo much doubt of : nor do we think it impoffible, that the like fmall Streights have been and are ftill generated. Streights alfo may be turned into Bays, and Bays into Streights; as if, for Example, the Mouth of the Streights of Magellan or Manilba, fhould be ftopped on the one fide or the other, they would be changed into long Bays: or if (on the other hand) the Iftbmus between Africa and Afia, fhould be removed, then the Red-Sea would be joined to the Mediterranean, and they both become Streights, and afford a Paffage to the Indian Ocean.

PROPOSITION V.

Whetber the Ocean be every wibere of the fame Altitude.

IT appears from the firf Propofition, that the Face of the Ocean in it's natural Situation, and when no Obftacle hinders, is every where of the fame Altitude, having, as was there proved a fpherical Surface, and being concentrical with the Earth: but it may be here dotibted, whether for fome Reafons, it may not in one Place be higher than in another; which is very worthy of Obfervation, and of great Moment to be well underftood, by
not an Ifland from the Beginning, but was formerly joined to France by an Iffmus, between Dover and Calais, and that this Ifthmus, in procels of Time, being continually beat upon by two impetuous Tides
every Day on both Sides, was wore away and wafted. The great Dr Wallis was of this O pinion, and fo was Dr Mu/grave. See both their Argaments in Pbilof. Tranf:abridged by Motte. Part 4. Page 35, 40.
thofe that propofe the cutting thro' of Ifthmus's, and joining one Part of the Ocean to another.

SEVERAL will have both the Sea and Land to be higher towards the Northern Parts, than about the Equator, and this was Ariftotle's Thought (in Lib. 2. Cbap. ii. de Calo) (c). The Reafon they bring for it is, that the Ocean feems to flow from the Northern Parts as from a Fountain; but this does not prove it's fuperior Altitude there: for whether the Northern Countries, or rather the Northern Chanels, be higher or lower than the Chanels near the Equator (as is yet doubtful, or at leaft not fufficiently proved from that Motion which is not generally found in all the Northern Parts) it does not follow, if they were fo admitted, that the Ocean is there higher; becaufe that to lower that fuperior Height, and to make the other equal with it, the Ocean is conftantly flowing towards the Equator. Arifotle in the forecited Place adds another fabulous Reafon, taken from the Poets, which is not worth an Anfwer, viz. that the Sun when it fets, hides itfelf beyond the great Bulk of the Northern Regions.

THIS Opinion of the fuperior Altitude of the North Pole, feems to arife from hence; that when we turn our Faces that way, we imagine the Pole to be raifed above the Horizon of the Place we are in, and therefore judge the Countries thereabouts to be elevated above us.

S OME think the Indian Ocean to be higher than the Atlantic, which they endeavour to prove from the Flux of the Sea in at the Streights of Gibralter, and of the Arabian Gulph: but then, this doubt is to be confidered, whether the Altitude of Bays, efpecially in their extream Parts, be the fame

[^10]with that of the Ocean, or lefs; and chiefly thore Bays which are joined by very narrow Streights to the Ocean.

THAT the Allantic and Indian Ocean are higher than the extream Parts of the Mediterranean, near Egypt and Afia minor, none need doubt; for unlefs the Streights of Gibralter (where the Atlantic floweth into the Mediterranean) were fomething lower than the Ocean, there would not be fuch a ftrong Current there as it is. Perhaps at the. Streight's mouth there may be but little difference; but then further, to continue the Flux all over that large Tract between Europe and Africa, the depreffion of the Bay muft by Degrees be greater, otherwife the Water could not flow when it is fo often obftructed by Rocks, Inlands, Peninfula's, and other Obftacles, which repel the Current of the Water, and diminifh the Force of the Influx. We need not doubt of this, if it be true what is recorded of Sefoftris, Darius, and other Kings of Egypt, by fome Authors of good Credit, how they attempted to cut a Chanel between the Red-Sea and the Nile, that out of the Indian Ocean and thro' the Red-Sea, they might fail that Way from the Mouth of the Nile into the Mediterranean; which would be of great Advantage to Egypt and other Countries upon the Coaft of the Mediterranean. But they were forced to defift from this Enterprife, when the Red-Sea was difcovered by the Artificers to be much higher than the Inner Egypt. If therefore the Red-Sea be higher than the Land of Egypt, it will be alfo higher than the Water of the Nile and the Mediterranean itfelf, into which the Nile flows; and confequently the Red-Sea, and alfo the Indian Ocean, are both higher than the Mediterranean, efpecially the furtheft Parts of it about E gypt, Romania, and the Archipelago.
V'OL. I.

MOREOVER, other Kings of Egypt of old, and of late the Egyptian Sultans, and \mathcal{T} urkiß Emperors, had frequent Confultations about cutting through that Iftbmus that joins Africa to Afia, and feparates the Mediterranean from the Red-Sea; but: the Reafon, as we are told, why they did not fet about it was, that the Indian and Red-Sea were found to be much higher than the Shores of the Mediterranean: and therefore it was feared, that the RedSea fhould overflow them, efpecially Egytt, which is reckoned by every one to be a very low Country.

THAT the Red-Sea is higher than the Mediterranean appeareth from thefe Obfervations; but this, not without Caufe, may be doubted by fome, becaufe they are both Bays, the one of the Atlantic and the other of the Indian Ocean. Therefore to give a plaufible Reafon, why the one fhould be higher than the other, it will not be amifs to confider; that tho' they are both depreffed more than the Seas from which they flow; yet the Difference is lefs fenfible in the extream Part of the Red-Sea, which is nearer the Indian Ocean, than the extream Parts of the Mediterranean are to the Allantic. For I cannot think that the Indian Ocean is higher than the Atlantic, as fome imagine.

IF therefore the Ifthmus was cut through, no doubt but a great Quantity of Water would flow from the Red-Sea into the Meditcrranean ; but I cannot think fo much as to bring Egypt, and other Places about the Levant, into danger of being overflowed: becaufe if the Indian Ocean poured in more Water, the Allantic, would very likely emit lefs, that fo they might each retain the fame Altitude in Proportion.

BESIDES this, I fuppofe the Sultans of Egypt and the Turks, were induced by other Political

Caufes

Caufes and Reafons to omit cutting through this

 Ithmus.THE firft fcruple was no doubt the greatnefs of the Work, for it would be no fmall Labour and Expence to cut thro' an Ifthmus, whofe Breadth at the narroweft Part is at leaft forty German Miles, and the Earth rocky; befides there muft have been Dams and Wears made in feveral Places, which could not have been done without fkillful Workmen, which thofe Nations have always wanted.

THE fecond Reafon was, becaufe they fuppofed the Chriftian Nations in-Italy, Venice, France, $S_{p a i n, ~ \& c, ~ w o u l d ~ r e c e i v e ~ g r e a t e r ~ B e n e f i t ~ t h a n ~ t h e y ~}^{\text {a }}$ themfelves from this Canal, by failing thro' it to Perfia and India, and bringing thence thofe precious Commodities, which the Turks and Egyptians at prefent carry at their own Prices by Land, and for which they receive large Duties, which bring confiderable Revenues into the Grand Seignior's Coffers. See Maffeus's Hiftory of India, Book iii. where he tells us, how much the Sultans of Egypt were formerly offended at the Portuguefe failing and trading into India.

A third Caufe why they neglected this was perhaps, becaufe they knew the Chriftians excelled them in Navigation; and were therefore afraid left they fhould irvade thofe Streights, and the adjacent Countries, or even Medina itfelf, the Sepulchre of Mabomet. For a confiderable Fleet would in a fhort time tranfport a great Army of Men, and all neceffary Provifions from Europe to Arabia, by this Canal.

B U T Alpbonfus Albuquerce, Governor of the Portuguefe. Indies, was of another Opinion, when he had intended to have turned the Nile from Egypt, by cutting a Chanel thro' Abyfinia (which borders upon $E g y p t$, only a few Defarts interpofing) to the Red-Sea, that by this neans he might
render Egypt barren and unfruitful to the $\mathcal{T u r k s}$; but he died before he could undertake it.

THUS far, concerning the Altitude of the Mediterranean compared with that of the Red-Sea, Atlantic, and Indian Ocean. We were obliged to explain it; becaufe from thence fome take Occafion to argue the unequal Altitude of fome Parts of the Ocean.

BUT thefe things may be confirmed by another Example, if we may compare great Things with fmall. The German Ocean, which is a Part of the Atlantic, running between Friefland and Holland, forms a Bay ; which tho' it be but fmall, in comparifon of thefe famous ones juft now mentioned, yet it is called a Sea, and watereth Amfterdam the Capital of Holland. Not far from thence is the Lake of Harlem, which is alfo called the Sea of Harlem: this is as high as the forementioned Bay, and fends out a Branch to Leyden; where it is divided into feveral leffer Canals. And becaufe neither the Lake nor the Bay overflows the bordering Country (when they are fettled and at quiet, and they have Bulwarks provided againft a Storm) it appears that they are not higher than the Lands of Holland. But that the German Ocean is higher than thefe Countries, hath been experienced by the Inhabitants of Leyden, when they undertook to cut a Canal from their City to the German Shore, near the Town of Catwic, which is about two Holland Miles in Length ; fo that the Sea being let in, they might fail into the German Ocean, and from thence to other Countries. But when they had finifhed a great Part of it, they were forced to leave off, having at length found, by Ob fervation, that the German Ocean was higher than the Ground between it and Leyden; from whence the Place where they left off is called by the Dutch, Het malle Gat. i. e, uaprofpercus. Therefore the der Zee or] the Bay of Holland.

BUT all Bays are not depreffed below the Ocean, for thofe that run out into the Land at broad and open Paffages, fuch as thofe of Mexico, Bengal, \&c. are, without doubt, of the fame Altitude with the Ocean itfelf: tho' I know the $S p a-$ niards doubted this (whether the Pacific Ocean was higher than the Bay of Mexico) when they confulted about cutting thro' the Ifthmus of Panama, that they might with more Expedition fail to Peru, Cbina, and the Indian Iflands. But befides this Sufpenfe, we underftand that they had a Political Reafon for not doing it ; they were afraid left the Englifh, Dutch, and other Nations fhould make ufe of it, and lie in wait at the Entrances, or invade Peru. For the Engli/h and Dutch would not care to make fuch long and dangerous Voyages thro' the Streights of Magellan or La Maire, when, with a well furnifhed Fleet, they could force their way thro' thofe Streights, and perhaps take Peru, or at leaft crufh the force of the Spaniards there.

THAT we may put an end to this, it is beft to determine, that the divers parts of the Ocean and broad Bays are all of the fame Altitude, (as was proved in the firft Propofition) but long Bays, and chiefly thofe produced from narrow Streights, are fomewhat depreffed, efpecially at their extream Parts : but I could wifh there were more diligent and accurate Obfervations made by thofe who have the Opportunities of making them, to remove, if poffible, the following Doubts, viz. I. Whether the Indian, Allantic, and Pacific Ocean are of the fame Altitude, or the Atlantic be lower than the other two. 2. Whether the northern Ocean, near the Pole, and within the Frigid Zone, be higher than the Allantic. 3. Whether the Red-Sea be higher than the Mediterranean. 4. Whether the

THE continual Flux and Reflux of the Sea, and Currents, make the Face of the Ocean mutable, and it's Parts of a different Altitude, at different Times; but thefe arife from external Caufes, and we here only confider the natural Conftitution of the Water: befides, they do not feem to alter the Altitude fo much in the middle of the Ocean, as near the Shores.

COROLLARY.

THEREFORE we cannot affent to Papyrius Fabianus and Cleomedes, who determined the greateft Height of the Ocean to be fifteen Furlongs, or half a German Mile ; unlefs they mean the Depth, which is not at all well expreffed by the Word Altitude, as it appears in the Tranflation of Ariftotle, Book i. Meteor. Chap. xi. at the end, where β ädsa тธั то́vrs is explained of the Altitude of the Sea.
PROPOSITION VI.

The Depth of the Sea, or Ocean, in moft Parts may be tried with a founding Lead; and there are but ferw Places where the Bottom cannot be reached.

THE Depth of the Ocean varies according to the greater or leffer Depreffion of the Chanels; being found $\frac{1}{80}$ of a German Mile, $\frac{1}{20}, \frac{1}{10}, \frac{1}{4}, \frac{1}{2}$, E'c. deep; and in a few Places a whole German Mile or more, where the Line was commonly not long enough to try how much, tho' even there it is likely the Bottom is not at a vaft Diftance, unlefs perhaps in fome Places there may be deeper Pits than ordinary, or fubterranecus Paffages.

THE Depth of Bays is not fo great as that of the Ocean, and their Chanels are lefs hollowed by being nearer the Land: for the fame Reafon the Ocean is not fo deep near the Shore, as in remote Places; which happens by reafon of the concave Shape of the Chanel.

S A IL OR S find the Sea's Depth with a founding Lead, in the Shape of a Pyramid, of about twelve Pound Weight, faftened to a Line about two hundred Perches long, tho' fome require a Lead of a greater Weight: yet they may be fometimes deceived in this Obfervation if the Line fhould be carried away by a Current or Whirlpool, fo as not to defcend perpendicularly, but obliquely.

BUT when the Depth is fo great that no Line is fufficient to found it, fome have thought of a Method to try it thus (d). In the firf Place they obferve, how long a known Weight of Lead will be in defcending a known Depth; then they faften
(d) The learned Dr Hook has given us a Method (much like the following) to found the Depth of the Sea without a Line, which, becaufe it promifeth Succefs, we fhall here defcribe from the Pbilof. Tranf. N^{0} 9. Page 147.

Take a Globe of Fir, or Maple, or other light Wood, as A ; (Fig. 19.) let it be well fecured by Varnifh, Pitch, or otherwife, from imbibing Water; than take a Piece of Lead, or Stone, D, confiderably heavier than will fink the Globe: let there be a long wire Staple B in the Ball A , and a Springing

Wire C, with a bended End F, and into the faid Staple, prefs in, with your Fingers, the fpringing Wire on the bended End: and on it hang the Weight D , by it's Hook E, and fo let the Globe and all fink gently into the Water, in the Polture reprefented in the Figure, to the Bottom, where the Weight, D, touching firft, is thereby flopped; but the Ball, being by the Impetus it acquired in defcending carried downwards a little after the Weight is ftopped, fuffers the fpringing Wire to fly back, and thereby fets itfelf at Liberty to re-afcend. And
a Cork or a blown Bladder to the Lead, fo as it may be difengaged from it, as foon as the Lead Thall touch the Bottom: this being done, they let down the Lead, and obferve the time between it's touching the Bottom, and the Cork's rifing to the Surface of the Sea; from whence by comparing this with the aforefaid Obfervations, and ftated Pro-

And by obferving the Time of the Ball's flay under Water, (which may be done by a Watch, or a good Minute Glafs, or beft of all by a Mendulum vibrating Seconds, (which muft be three Foot three Inches and one fifth of an Inch long) you may by the help of fome

Tables, come to know any Depth of the Sea. Which Tables may be calculated from the following Experiments made by the Lord Viic. Brounker, Sir Robert Murray, and Mr Hook, in the Chanel at Sheernefs; mentioned in Pbilof. Tranf. N° 24. Page 439.
Oz. Gr.

The Ball B and the Lead B were let down at fixteen Fa thoms; and the Ball returned in forty eight fingle Strokes of a Pendulum, held in the Hand, vibrating fifty eight fingle Strokes in a Minute.

A fecond time repeated with the fame Succefs; wherefore the Motion was four Foot every Second.

Again the Ball A, and the Lead B, whore Nail was bended into a fharper Angle; the Ball returned in thirty nine Strokes. A fecond time repeated with the fame Succefs, at the fame Depth.

Ball A, Lead A, at eight Fathoms and one Foot, returned at twenty; repeated at eight Fathoms, returned at nineteen.

Tried the third time at ten

Fathoms four Foot, returned at twenty eight.

A fourth Tryal at the fame Depth, juft the fame.

A fifth, at ten Fathoms five Foot. returned at twenty feven.

A fixth Tryal, juft the fame.
A feventh at twelve Fathoms five Foot, returned in thirtyfeven.
An eighth Tryal juft the fame.
But if it be alledged, that it mult be known, when a light Body afcends from the Bottom of the Water to the Top, in what Proportion of Time it rifes; it may be confidered, that in thefe Experiments the Times of the Defcent and Afcent are both taken and computed together; fo that for this Purpofe, there needs not the Nicety which is alledged. portions, they find the Depth of the Ocean. But there is fuch a Nicety required in making thefe Tryals, and the time of Obfervation is fo fhort, that it is very rare to find the true Depth by this Method. However it appeareth, that the Depth of the Ocean is every where finite, and not extended to the Antipodes; becaufe if two Portions of Earth were divided by any Part of the Ocean, which might be continued thro' the Center to the oppofite Side of the Globe, unlefs they were fupported with Arches, they would immediately fall together at the Center, becaufe the Earth is heavier than the Water. Befides, the whole Bulk of Earth and Water is finite and fpherical ; and therefore the Depth of the Ocean cannot be infinite.

MOREOVER, from the Obfervations of the Depth in divers Places, it is manifert, that the Chanels in Depth are nearly equal to the Mountains and inland Parts in Elevation, that is, as much as the one is raifed, fo much the other is depreffed, and as the Altitude of the inland Parts is gradually increafed from the Shore, fo is the Sea deeper and deeper towards the Middle of the Ocean, where the Depth is for the moft part greateft.

THE Depth of the Sea, is in the fame Place often altered by thefe or the like Caufes. I. By the Flux and Reflux. 2. by the Increafe and Decreafe of the Moon. 3. By the Winds. 4. By the mouldering and fubfiding of the Shores; whence the Chanel is made higher in procefs of time by Sand and Mud.

PROPOSITION VII.

The Ocean dotb not flow from Springs, but is contained witbin the Cavities of the Eartb; tho' it is not always numerically the fame, but continually increafing and dimini/bing.

W E know by Experience that the Water of Rivers is produced by Springs, and becaufe it hath been fo for many Ages paft, it neceffarily follows, that the Water which is continually flowing to the Sea, returns again to the Fountains, either by fubterraneous Ducts, or fome other way. The Philofophers of old were alfo of Opinion, that the Sea iffued forth at feveral Springs; neither could the Magnitude nor the Perpetuity of it's Bulk convince them of their Error, for they faid, that it was conveyed by fubterrancous Fiffures to thefe Fountains, which therefore kept continually flowing. Arifotle (Book ii. Meteor. Chap. ii.) endeavours to prove the contrary, and to refute the Arguments of the Ancients, but fays very little to the Purpofe; we think thefe following will be more effectual to difprove them. If the Ocean have Springs they muft either be in the raifed Parts of the Earth, or in that Part which is covered with the Ocean, that is in the very Chanel of the Sea That there are no fuch upon the dry Land is apparent, becaufe there were never yet found any; and to fay that they are in the unknown Countries towards the North or South Pole is to take a Thing for granted without any manner of Reafon for it, becaufe moft of thefe Countries are covered with Ice continually, and as many as are difcovered of them afford no Springs at all. Neither can they pretend to fay that they are in the Chanel of the Sea; for if they were, they would be no further diftant from the Center than the Ocean itfelf; and therefore the Water in them would not flow, but be at Reft, becaufe it is againft Nature that it fhould afcend from a lower to a higher Place; and the Springs of all Rivers are higher than the Waters they emit. Some indeed may object that this Motion is violent, becaufe that the Bottom of the Ocean, being perforated into Ducts, Meanders, Fiffures, or Canals, minated in the Earth's Bowels, but extended to another Part of the Bottom of the Ocean by more Intercourfes than one; fome of which convey the Water one way, and fome another, fo that it iffueth out of each, as if they were fo many Springs. And fince (fay they) it is not contrary to Reafon to fuppofe many of thefe Paffages or Intercourfes, nothing hinders but that there may be alfo as many Springs in the very Chanel of the Ocean. But thefe are all vain Fancies, and no way agreeing with the Nature of Water; for tho' the Water be continued thro' thefe Orifices, it will not flow thro' one or the other, but be at Reft, unlefs it be urged by fome external Caufe; and tho' it be preffed by the incumbent Water on this fide the Intercourfe, it will not difcharge itfelf at the other; becaufe it is as much preffed by the incumbent Water there, which keeps it in Equilibrio, and at Reft, as may be proved by Experiment thus:

Let ABCD (Fig. 20.) be a Veffel full of Water, and A B it's fpherical Superficies. Let R PEF be a hollow Beam of Wood, lying obliquely un-s der Water, fo that the whole at g under A may be higher than the Hole at b under B. Then the Water will flow in at both ends of the Beam 'till the hollow Part be full; but there will be no Flux at either Orifice; not at g becaufe it is higher nor at h, becaufe, tho' it be lower than g, yet the greater Weight of the Water about B will ftop the Flux (e).
(e) For, by the Laws of Hy droftatics, the Weight of the greater Column of Water under B is of the fame force to prefs the Witer upwards at the Hole b, as the leffer Column
of Water under A, and it's own relative Gravity in the declining Bore is to prefs it downwards at the Hole g : therefore it remains in AEquilibrio, and at Rent.

IF it fhould be again objected, that the incumbent Water upon the one Orifice is of a lefs Altitude, and therefore not of fo great Force to repel the Flux of Water, which is immitted at the other: We anfwer, 1. That fuch a thing may be, if the Superficies of the Water, which preffeth one Orifice, be feparated or not continuous to the Superficies of the Water that preffeth the other Orifice ; but if thefe two Surfaces are continuous, the Water will fooner defcend by that Continuation to the lower Place, than by this fubterraneous Duct. 2. If what was objected be allowed, this Motion would in a fhort time ceafe, viz. when fo much Water was run out by the Intercourfe from the higher to the lower Place, as to make both their Surfaces of an equal Altitude. And further, fuppofe one part of the Ocean was perpetually higher than the other, there could be no Reafon given, why the Water fhould circulate, or interchangeably be poured from one Part into another.

FR OM whence it is evident, that the Ocean hath no Springs, but is a vaft Collection of Waters contained in Chanels.

YET there are fome things to be taken notice of, which are commonly objected againft this, siz.

1. THAT our proof is built upon a Suppofition, that the Ocean, as to it's natural Conftitution, is continually at Reft, without taking notice of it's being moved by any external Caufes: but there is no time in which the Ocean is not in Motion, either by the Wind or Tide, or fome other violent Agent, which caufes the Altitude and quantity of the Water to be greater fometimes in one Place and fometimes in another; and then the Water which is more elevated, is poured into thofe fubterraneous Intercourfes, and rufhes towards the Parts that are of a lefs Altitude, and where the incumbent Water is

CHap. 13. of Univerfal Geography. 205 lefs able to refift the Eruption. To which I anfwer, that tho' this is poffible, yet it cannot be proved either by Reafon or Experience, fo neither can the contrary, therefore this Problem is a Dilemma, or doubtful. That there are indeed fubterraneous Receptacles and Cavities in fome Parts of the Bottom of the Sea we cannot deny, becaufe in fome Parts it is of an immenfe Depth, where the neighbouring Places are but fhallow; but if this were admitted it will not follow, that the Water runs thro' thefe Paffages, or that they extend from one Chanel of the Ocean to another: or even if they were, fince they are not in all Places, and fince thefe external Caufes operate fometimes in one, and fometimes in another Part of the Ocean, it will not be granted, that there are perpetual Springs of the Ocean in any one Place, but that the Water flows fometimes from one Part of the Chanel, and fometimes from another, according to the Place and Continuance of the external Caufe.
2. SOME may thus argue, that there is a continual Current of the Sea from North to South, between both Sides of America and the Old World; but that we cannot perceive a Current in any Place whereby the Water is conveyed towards the Northern Regions : therefore fince the Flux is perpetual, and hath no apparent Source there, nor Conveyance thither, it is probable, that the Water flows to the North thro' fubterraneous Paffages, and iffueth out at the Holes in the Bottom of the Chanel, as out of a Spring; from whence it returns again to the fouthward. There is another Caufe taken from the former, viz. That the Sea-Water in the Torrid Zone is much heavier than in the Northern Regions, as we fhall prove in Propofition 8, and 12; and therefore there is a greater Preffure and Force to puih forward the Water thro' the Paffages there, than there is to refift it at the Northern End of the Intercourfes,

Intercourfes, where, for want of an equal Preffure, it breaks out at the Holes in the Bottom of the Chanels. To this we anfwer, that the Flux of the Ocean from the North is not fo great as is fuppofed, and as the Ancients imagined; (who would have the Water to flow from the Pole thro' four Chanels, as is reprefented in fome old Geographical Maps ;) nor are the Currents conftant, but only frequently obferved, by reafon of the frequent North-Winds, and the great quantities of Snow and Rain which very often raife the Waters, and caufe them to flow towards the South. And further, in other Parts another Motion of the Sea is obferved, of which fee the following Chapter.
3. I T is no Notion, but a real Truth, that all the Springs of Rivers, which flow into the Sea, are Springs of the Ocean: For fince there is in Procefs of Time a vaft quantity of Water poured into the Sea, no doubt but it returns from the Ocean to the Heads of the Rivers thro' fubterraneous Paffages, or by Dew and Rain. We fhall not contend about this; for we do not, in the Propofition, mean fuch Springs as thefe; but whether there are Springs in the Caverns of the Earth, under the Chanel of the Sea, which fupply the Ocean with Water.
4. IT appears probable, that there are fuch Springs in the Chanels of the Sea; becaufe there is found, in fome Places, frefh Water at the Bottom of the Sea, which muft certainly arife from Springs in the very Chanel. Linfchoten tells us, that in the Gulph of Ormus, near the little Inand Bareyn, there is brought up freth Water, by the Divers, at four or five Fathoms depth; and the like Springs are found at the Bottom of the Seas and Bays. To this we anfwer ; that there are but few fuch Springs found, and thofe not fufficient Queftion is not about fuch, as we faid before.

FROM thefe Things it appears, that the Sea may be rightly faid to have Springs in fome Senfe, tho' different from what we mean by the Springs of Rivers ; in which Senfe this Propofition ought to be undertood. Hence alfo we know what to think of the Queftion; Whether the Ocean be always one and the fame, and conftantly remains fo, or whether it be a Body whofe Parts are confumed and renewed again perpetually.

PROPOSITION VIII.

The Saltnefs, or Salt Tafte, of the Sea-Water proceeds from the Particles of Salt which are mixed with it : but whence these Particles proceed, or bow they are continued and increafed, is uncertain.

EXPERIENCE proves the firt Part of this Propofition, for every Body knows that Salt is made either by evaporating Sea-Water with the Sun, or by boiling it with the Heat of our Fires. In Germany, and other Countries, they make ufe of Fire to feparate the Water from it. But in France, where the Sun is hotter, the Sea-Water is let into Pits or Ponds, where in a few Months, by the extream Heat of the Sun, it's frefh Particles are exhaled or evaporated, and it's falt ones are concreted and formed into Grains of Salt. Alfo upon the Shores of feveral Countries, as England, $\mathcal{E}^{2} c$. there is gathered abundance of Bay-Salt, which the Sea (continually overflowing them) leaves daily in moift Particles, from whence the moft fubtile, or frefh, Parts are exhaled, and what is left becomes Heaps of Grains of Salt, whofe Blacknefs is taken off by boiling; tho this fort of Salt is wafhed away and diffolved from many Shores by found upon all Shores. And fince this is a common Experiment which every one knows, Ariftotle need not have inftanced a falfe one (by letting down a Veffel of Wax into the Sea) to prove the Truth of this Propofition.

HENCE it appears, that the true Caufe of the Saltnefs of Sea Water, is the Particles of Salt which are contained in it, and mixed with it. Therefore the Arifototlians, with their Mafter, fpeak improperiy, and obicurely, when they affert that this Saltnefs is caufed by the Water's being extreamly heated by the Rays of the Sun; but of this we fhall fay more by and by.

BUT the chief Controverfy is about the other part of the Propofition, viz. whence thefe Particles of Salt proceed ?

ARISTOTLE was of Opinion that the dry Exhalations, or Fumes, (which he thought were burnt, and of a faline Nature) being elevated from the Earth, and mixed with moint Particles, when they are turned into Rain, fall down with it into the Sea, and that from thence proceed the faline Particles, and the Saltnefs in the Sea-Water. Thefe are his exprefs Words in Lib. ii. Cbap. vii. Meteor. And he takes a great deal of Pains to defend this Opinion, becaure by it he could fhew a Reafon why the Ser continues always falt.
OTHER Peripatetics (who alfo pretend to have Arifotle on their Side) affert, that the Sea is falt in itfelf, by reafon of it's being perpetually fcorched with the Sun-Beams; and for this Reafon they fay it is frefher towards the Bottom, and falteft at the Surface.

BOTH thefe Opinions labour under fuch great Difficulties and Abfurdities, that it is a Wonder fo many learned Men and Philofophers could be fatisfied with them.

THESE

Снар. 13. of Univerfal Geography. 209
THESE things may be objected againft Arifotle's Hypothefis; 1. That Rain-Water, according to this, ought to tafte falt, upon the Ocean, which is contrary to Experience, for it is found not to tafte falt at all. And Scaliger's Remedy for this is infufficient, who fays, that it ought not to tafte fo at firt, becaufe the hot Vapour hath not had time to be condenfed, being more rare, and alfo having lately defcended from a colder Region of the Air; but fuch Rain-Water hath been preferved feveral Days by Mariners, in which time it would certainly have tafted falt, if it had held any in it. 2. The lefs it rained the lefs falt would the Sea-Water tafte, which is found to the contrary.

THE other Opinion hath thefe Abfurdities: 1. It is falfe that the Sea is not fo brackifh nearer the Bottom; for this only happens where Springs of frefh Water rife from the Bottom of the Chanel. 2. Experience fhews that frefh Water doth not become falt by long boiling, or by being long expofed to the Sun. Scaliger likewife endeavours to obviate this Objection by a fubtile Argument. He fays that this happens fo by reafon of the fmallnefs of the quantity of that Water which is ufed in the Experiment, which doth not thicken but is diffolved. But let us take ever fo great a Quantity, and put it over a gentle Fire, that the diffolution (into Vapours as he means) may be hindred, yet the Water will tafte no more brackifh than it did at firf. 3. Lakes and Marfhes, though they are conftantly heated by the SunBeams, yet do not grow falt. Scaliger alfo would wave this Objection, faying, that this happens becaufe of the continual Succeffion of frefh Water. But if we obferve Lakes and Moraffes that are fed only by Rain and melted Snow, where there is no fuch Succeffion, we fhall find

VOL.I. them
them rather to dry up, thro' a long want of Rain, than to become brackifh, or be turned into falt.

THEREFORE, rejecting thefe falfe Opinions concerning the Origin of Salt in the Ocean, let us lay hold of fome others that feem more probable (f).

\author{

1. THESE
}
(f) The moft probable Caufe of the faltnefs of the Ocean is thus explained by Dr Halley, in Pbilof. Tranf. No 344. ' I - have obferved (fays he) that - all the Lakes in the World, - properly fo called, are found - to be falt, fome more fome - lefs than the Ocean Sea, - which, in the prefenc Cafe,

- may alfo be efteemed a Lake;
- fince by that Term I mean
- fuch itanding Waters as per-
- petually receive Rivers run-
- ning into them, and have no
- Exit or Evacuation.
- The number of thefe Lakes, - in the known Part of the
- World, is exceeding fmall,
- and indeed, upon enquiry, I
- cannot be certain there are in
- all any more than four or five,
- viz. 1. The Cafpian Sea. 2.
- The Mare Mortuum, or Lacus
- Ajpbaltites. 3. The Lake on

6 which ftands the City of

- Mexico; and 4. Titicaca a
- Lake in Peru, which, by a
- Chanel of about fifty Leagues,
- communicates with a fifth and
- fmaller, called the Lake of
- Paria, neither of which have
- any other Exit. Of thefe the
- Cappian, which is by much
- the greateft, is reported to be
- fomewhat lefs falt than the
- Ocean. The Lacus Ajpbul-
' tites is fo exceeding falt, that
- it's Waters feem fully fated,
- or fcarce capable to diffolve
- any more ; whence, in Sum-
' mer time, it's Banks are in-
- cruftated with great Quan-
' tities of dry Salt, of fome-
- what a more pungent Nature
- than the Marine, as having
- a relifh of Sal Ammoniac; as
- I was informed by a curious
- Gentleman that was upon the
- Place.
- The Lake of Mexico, pro-
- perly fpeaking, is two Lakes
- divided by the Caufways that
- lead to the City, which is
- built in Mands in the midat
- of the Lake, undoubtedly for
- it's Security ; after the Idea,
- it is poffible, it's firft Founders
- borrowed from their Beavers,
- who build their Houfes
- in Damms they make in the
- Rivers after that manner.
- Now that part of the Lake
' which is to the northwards
- of the Town and Caufwass,
- receives a River of a confider-
- able Magnitude, which being
- fomewhat higher than the o-
- ther, does with a fmall fall
- exonerate itfelfinto the fouth-
- ern Part which is lower.
- Of thefe the lower is found

Сhap. 13. of Univerfal Geography. 211

1. THESE Particles are coëval with the Ocean itfelf, and therefore it is the fame thing to enquire about the Origin of the terraqueous Globe, and the Fabric of the whole World, as to difpute how the Ocean came to be falt.
2. IF this Opinion do not pleafe, we will propofe another, viz. that thefe Particles were, in times paft, wafhed and disjoined from the Earth, and diffolved in the Water; for we need not doubt but that there are feveral Mountains and Rocks of Salt in the Chanel of the Sea. The Inland of Ormus is nothing but white hard Salt, of which they make the Walls of their Houfes, and there

- to be falt, but to what De-
' gree I cannot yet learn;
6 though the apper be almoft
6 freh.
- And the Lake of Titicaca,
- being near eighty Leagues in
- Circumference, and receiving
- feveral confiderable frefh Ri -
- vers, has it's Waters, by the
- Teftimony of Herrera and
- Acofta, fo brackih as not to
- be potable, tho' not fully fo
- falt as that of the Ocean;
- and the like they affirm of
- that of Paria, into which the
- Lake of Titicaca does in part - exonerate itfelf, and which - I doubt not will be found - much falter than it, if it were - enquired into.
- Now I conceive, that as all - the Lakes mentioned do re-- ceive Rivers, and have no
- Exit or Difcharge, fo 'twill
- be neceflary that their Waters

6 rife until fuch time as their

- Surfaces are fufficiently ex-
- tended, fo as to exhale in
- Vapour that Water that is - poured in by the Rivers; and
- confequently that Lakes muft
- be bigger or leffer according
- to the Quantity of the frefh
- Water they receive. But the
- Vapours thus exhaled are per-
- fectly frefh, fo that the faline
- Particles that are brought in
- by the Rivers remain behind,
- whilft the frefh evaporates;
' and hence 'tis evident, that
- the Salt in the Lakes will be
- continually_angmented, and
- the Water grow falter and
- falter. But in Lakes that have
(an Exit, as the Lake of Gen-- nefaret, otherwife called that
' of Tiberias, and the upper
- Lake of Mexico, and indeed - in moft others, the Water bet
- ing continually running off, is
- fupplied by new frelh River-
- Water, in which the faline
- Particles are fo few as by no
- means to be perceived.

Now if this be the true

- Reafon of the Saltnefs of
- thefe Lakes, 'tis not improba-
- ble but that the Ocean itfelf
- is become falt from the fame
- Caure, छ゙\% burned and confumed to Afhes, much Salt will be found in it.

N OTHING can be alledged againft this Opinion of any Weight, and which may not be cafily refuted. Some have thought it impoffible that thefe falt Particles of the Earth fhould perpetually fuffice, and fhould not at fome time be quite wafhed away by the Water of the Ocean, which conftantly takes away fome Part of them: To which we anfwer ; that the Salt, thus wrought upon, is not fo much leffened as to need great recruiting; and if any be disjoined, or fhaken from the reft, it is not carried without the Ocean, but laid up in fome other Place.
PROPOSITION IX.

Whetber the Sea-Water be frelber nearer the Bottom? and why, in some Places, frefo Water is drawn from the Bottom of the Ocean?

TO thefe Queftions I anfwer; That we have not found it frefher near the Bottom, except in fome particular Places; where, it is very probable, there are Springs of frefh Water. For it is againft Nature that Salt Water fhould float above frefh, when it is heavier.

THOSE

THOSE Places of the Sea where there feem to be frefh Water Springs, at the Bottom, the Studious may collect out of Geographical Aur thors (f).

PROPOSITION X.

The Water of the Ocean is less falt by bow mucb it is nearer the Poles, and Salteft about the Equator, or in the Torrid Zone.

THIS is only to be underftood of moft Parts of the Ocean, for the Propofition admits of fome few Exceptions.

THERE are feveral Reafons for this unequal Saltnefs, viz.

1. THAT the Heat of the Sun in the Torrid Zone exhales more Vapours than in the northern Countries, and thefe Vapours are all frefh Water for the Particles of Salt are not fo eafily evaporated by reafon of their Gravity; and therefore the
(f) That the Curious may not be at a Lofs to examine the Saltnels of the Water at feveral Depths, Dr Hook invented an Inftrument to fetch it upat any Depth, which is defcribed in Pbilof. Tranf. No 9. Page 149. and $\mathrm{N}^{0}{ }_{24}$. Page 447. or in Lowtborp's Abridgment, Vol. 2. Page 260. Thus:

Let there be made a fquare wooden Bucket C, (Fig. 21.) whofe Bottoms E E, are fo contrived, that as the Weight A finks the Iron B, to which the Bucket C, is faftened by two Handles D D, on the end of which are the moveable Valves or Bottoms E E, and thereby staws down the Bucket ; the

Refiltance of the Water keeps up the Bucket in the Polture C, whereby the Water hath, all the while it is defcending, a clear Paflage through ; whereas, as foon as the Bucket is pulled upwards by the Line F, the Refiftance of the Water to that Motion, beats the Bucket downwards, and keeps it in the Poflure G, whereby the included Water is kept from getting out, and the ambient Water kept from getting in.

By the advantage of this Verfel, you may know the Confltution of the Sea-Water in feveral Depths; and whether it be falterat, and towards, the Bottom, falt about the Equator than towards the Poles, where there is not fo much frefh Water exhaled becaufe of the wak Heat of the Sun.
2. A fecond Caufe is the Heat and Coldnefs of the Water; for the fame Water, falt Meat, pickled Beef, Pork, \mathcal{E}°. tafte falter when hot than when cold, as every one knows from his own Obfervation : becaufe the Heat, or the Particles of Fire, agitate and fharpen the Particles of Salt contained in fuch Meat, and feparate them one from another; fo that they ftrike and prick the Tongue more fharply. Therefore, becaufe the Sea-Water near the Equator is hotter, and coldeft towards the Poles, it follows, that tho' every Part of the Ocean were admitted to be of equal Saltnefs, yet it ought to tafte falteft about the Equator, and frefheft near the Poles.
3. A third Caufe is a greater or lefs quantity of Salt in divers Parts of the Chanel of the Sea; for as we find not Mines of Salt all over the dry Land, nor a like quantity of Salt in the Places where they are found, the fame may be fuppofed at the Bottom of the Ocean, where fome Shores and Chanels are not fo full of Salt as others. Therefore where there is a greater quantity of Salt at the Bottom of the Ocean, there the SeaWater is more falt, becaufe there is greater Plenty of this Mineral imbodied or foaked in it, as is eafy to conceive. For this Reafon the SeaWater near the Ine of Ormus is extream falt, becaufe the Ifland itfelf is all Salt. But whether there be a greater quaritity of Salt Mines under Water in the Torrid Zone than about the Poles is uncertain for want of Obfervations; but fome think it probable (becaufe of the greater Heat of the Sun whereby the frefh Particles are exhaled) that there is more Salt in the former: tho' this be but a weak Reafon.
4. A fourth Caufe is the frequency and fcarcity of Rain or Snow. In the northern Countries they have both very frequent: but under the Torrid Zone they have no Rains at all for fome Parts of the Year, and at other Times they are almoft conftant. Therefore, in thefe Places, the Ocean, near the Shores, is not fo falt in rainy Months as it is in dry ones. Yea in feveral Places on the Coaft of Malabar, in India, the Sea-Water taftes fweet in the rainy Months, by reafon of the vaft quantity of Water which flows from off Mount Gate, and falls there into the Sea. This is the Reafon why, at different Times of the Year, the fame Parts of the Ocean are of different Degrees of Saltnefs. But becaufe in the northern Countries there are conftant Rains and Snow almoft throughout the whole Year, therefore the Sea there is lefs falt than in the Torrid Zone.
5. A fifth Caufe is the different quality of the Water to diffolve and mix the Salt with it; for hot Water diffolves Salt much fooner than cold: and therefore tho' there were the fame quantity of Salt under Water in the Chanels of the Sea, near the Poles, as about the Equator; yet becaufe the Water is cold there, it cannot fo quickly diffolve it into minute Particles and mix with it, as the Water in the Torrid Zone which is hotter.
6. A fixth Caufe is the great and many large Rivers that empty themfelves into the Sea; but thefe only caufe an Alteration upon the Coafts; for the main Ocean is not fenfibly affected by them. Mariners relate that upon the Coaft of Brafll where the Rio de la Plata empties itfelf into the Sea, the Ocean lofes it's falt Tafte, at almoft fifteen Leagues Diftance from the Shore; and the fame
\mathbf{P}_{4} Malabar in India, (as was obferved before) $\mathcal{E}^{c} c$. To thefe Caufes we may add the fpringing up of frefh Water in fome places from the Bottom of the Sea.

THESE Caufes (whether feparate or united) make a great variety of Saltnefs in different Parts of the Ocean, and by thefe that variety is explained and accounted for.

HENCE there is given a Reafon why the Water of the German and northern Ocean will not yield fo much Salt by boiling, as the Water of the weftern Ocean about Spain, the Canary Inlands, and Cape Verd in Africa, (from whence the Dutch fetch abundance of Salt and tranfport it to feveral northern Countries, viz. to Prufia, Poland, \&c.) becaufe thefe Coafts are nearer the Torrid Zone than the other ; tho' perhaps both their Chanels may contain an equal quantity of Salt.

THE Sea-Water in the Etbiopic Ocean, over againft Guinea, yields white Salt, with once boiling, as fine as Sugar, fuch as neither the Spani/b Ocean, nor any other in Europe will produce at once boiling.
PROPOSITION XI.

Wby Rain-Water catched in the middle of the Ocean is found to be fweet and frefh, when it proceeds from the Vapours which are exbaled from the Sea; whereas the Water, wbich, by boiling or difilling, we feparate from the falt Water of the Sea, is found to be falt.

THOSE that have diligently fearched into the Secrets of Nature, I mean the learned Chymifts, (not thofe ignorant Pretenders to Chymiftry)
have hitherto laboured in vain to find out a Method of diftilling or extracting frefh Water from the Sea-Water, which would be of great ufe and advantage to Navigation (g). And tho' both by Decoction and Diftillation, which are in Effect the fame, there is Salt left in the Bottom of the
(g) Mr Hauton firf found out the Secret of making SeaWater fweet. It confifts firf in a Precipitation made with the Oil of Tartar, which he knows to draw with fmall Charges. Next he difilis the Sed-Water ; in which the Furnace taketh up but little Room, and is fo made, that, with a very little Wood or Coal, he can diftil twenty four Frencb Pots of Water in a Day; for the cooling of which he hath this new Invention, that inflead of making the Worm pafs thro' a Veffel full of Water (as is the ordinary Practice), he maketh it go thro' a Hole, made on purpofe out of the Ship, and to enter in again thro' another ; fo that the Water of the Sea performeth the cooling Part; by which means he faveth the Room which the common Refrigerium would take up; as alfo the Labour of changing the Water when the Worm hath heated it. But then, thirdly, he joins to the two precedent Operations Filtration, whereby perfeclly to correct the malignity of the W_{a} ter. This Filtration is made by means of a peculiar Earth, which he mixeth and ftirs with the diftilled Water, and at length fuffers to fettle at the Bottom

He maintains that this diftilled Sea-Water is altogether fa-
lubrious: he proves it from Experience, it having been given to Men and Beafts, without any ill Effect at all upon them. Secondly, from Reafon grounded on this, that that peculiar Earth being mixed with the diffilled Water, blunts the Points of the volatile Spirits of the Salt, and ferveth them for Sheaths, if I may fo fpeak, taking away their Force and malign fharpnefs. Pbilof. Tranf. abridged by Lowtborp. Vol. 2. Page 297.

I have been credibly informed by experienced Sailors (particularly fome that had an Engine on Board) that Salt-Water made frefh by Diftillation. would not quench Thirlt; but that, when they had drank as much as they could get down, their Thirf, was not at all abated. So necellary are the Impregnations, which the Waters receive in their paffages about the Earth, to make them nutritive. And the richer. and more fulphureous, thofe Impregnationsare, fo much the richer, and better, fuch Waters are accounted. An inftance of which we have in the Richnefs and Spirituoufnefs of the Tbames-Water at Sea, which no doubt it receives from it's Impregnations by the Soil, and Filth, of the London Keinels.

Veffel, yet the Water thus feparated is ftill falt, and not fit for drinking, which feems ftrange to thofe that are ignorant of the Caufe of it. This is taught by Chymiftry (which is the trueft Phliofophy), by the help of which there are found two kinds of Salt in all Bodies, which tho' they perfectly agree in Tafte, yet they exceedingly differ in other Qualities: Artifts call the one fixed Salt, the other volatile. The fixed Salt, becaufe of it's Gravity, is not evaporated by Diftillation, but remains in the Bottom of the Veffel : but the volatile Salt is fpirituous, and indeed nothing but a moft fubtile Spirit, which is eafily raifed with a very gentle Fire ; and therefore in Diftillation afcends with the fweet Water, and is well mixed with it by Reafon of the fubtilty of it's Particles. This fixed and volatile Salt is found, by Chymifts, to be not only in Sea-Water, but almoft in all Bodies, tho' more in fome than in others; in Herbs that tafte fharp there is more, but in oily and infipid Things lefs. The Difficulty therefore lies in feparating the volatile Salt, or the falt Spirit from the Water ; for it is this which hath rendered all the Efforts hitherto fruitlefs.

BUT why Rain-Water fhould be as fweet and frefh on the main Ocean as it is at Land, when it is generated from Exhalations, which arife from the Sea by the Heat of the Sun, or is exhaled by the Force of fubterraneous Fire, which Evaporation no way differs from Diftillation, there feemeth to be a fourfold Caufe.

1. A nlow and yentle Evaporation, by which only the more fubtile Part is exhaled out of the Ocean, which tho' it contain the volatile Spirit of Salt, yet it is in a lefs quantity than when the Evaporation is made by a ftrong Heat. 2. The long Space which this Vapour paffes thro before it arrives at that Region of the Air where it is condenfed denfed into Rain : in which Paffage it is poffible that the faline Spirit may be by degrees feparated from the watery Particles. 3. The Mixture of other frefh Particles of Water that are in the Air. 4. The Refrigeration and Coagulation or Condenfation of the Vapour. For thefe Vapours in their afcent from the Ocean become, by degrees, colder, and mixing with others in their Way, they are condenfed and turned in Clouds; and in this Refrigeration and Condenfation the faline Spirits fly away, with fiery Particles, into a higher Place of the Air.

BUT why this doth not happen in Diftillation (where the Vapours exhaled become more cool and condenfed) proceeds from hence: I. In this fhort Paffage the faline Spirit fticketh clofe to the watery Particles. 2. The Vapour is kept in a Veffel which doth not admit the Spirit to fly thro' it.

PROPOSITION XII.

Sea-Water is beavier than frefb; and Sea-Water iz one Place is beavier than in anotber (b).

THE Reafon of this is plain from what we have faid before, viz. that the Sea-Water contains a fixed Salt which is a much heavier Body than
(b) Mr Bogle having recommended this Matter, among others, to a learned Phyfician that was failing to America, and furnifhed him with a fmall hydroftatical Infrument to obferve, from time to time, the differences of Gravity he might meet with; this Account was returned him ; ' that he found, by 6 the Glafs, the Sea-Water to

- increafe in Weight the nearer
- he came to the Line, 'till he
- arrived at a certain Degree
- of Latitude; as he remembers
- it was about the $30^{\text {th }}$; after
' which the Water feemed to
- retain the fame (pecificGravity
- 'till he came to Barbadoes, or
- Famaica. Lozotborp's Abridg-
- ment of Pbilof. Tranfact. Page
- 297. Vol. 2.
frefh Water: and we have fhewn that there is a different quantity of Salt in different Parts of the Sea; which mult caufe the Gravity of the Water to be unequal. But fome Sea-Water may happen to tafte more falt than others, and yet be not more weighty; becaufe it perhaps contains a greater quantity of volatile Salt, which does rather diminifh than increafe it's Weight, tho' it make it more falt.
PROPOSITION XIII.

Sea-Water dotb not fo eafily freeze as frefb; or a greater Degree of cold is required to congeal Sea-Water, than to congeal fre/b.

EXPERIENCE fhews this, contrary to the Opinion of the Peripatetics, who mention that by how much Water is more pure, it is lefs liable to freeze, and that Sea-Water being more elementary than frefh will freeze the fooner; which is falfe.

B U T the Caufe is, that in Salt there is a certain Spirit which refifts Coagulation, and this being feparated from it, will not congeal in the hardeft Froft, as is well known to Chymifts : for they frequently make ufe of this Spirit of Salt (i).
(i) The Particles of two different Bodies, which would be more at Reft when feparate, when they are mixed are put into new Motions by Attraction, which acts upon them only when they approach one another; and caufes them to meet and clafh with great Violence, and to keep hot with the Mo-
tion. So that Water mixed with Salt, is more in Motion than Water alone; and therefore the Particles of Sea-Water are not fo eafily congealed, or made to reft, as the Particles of frefh, which do not refirt the cold with fuch violent Motions. See Newtor's Optics. Pag. 355°
$P R O$

PROPOSITION XIV.

Why the Ocean is not enlarged when it receives fo many Rivers.

THE Caufe is; 1. The Water returns from the Sea, thro' fubterraneous Fiffures to the Heads of the Rivers. 2. Plenty of Vapours are raifed from the Ocean, a great Part of which being turned into Rain, fall partly into the Ocean, and partly on the dry Land (k).

PRO.

(k) Since the Ocean conftantly receives a prodigious quantity of Water, both from Rivers that exonerate themfelves into it, and alfo from the Air, in Dew, Rain, and Snow, that fall; it is impoflible but it thould be enlarged, and encreafe to an immenfe Bulk, unlefs it be as much leffened fome other way. And feeing there hath not been obferved any fuch great increafe in the Sea, and that the bounds of the Earth and Ocean are found to be in all Ages the fame, it remains that we inquire by what means the Ocean lofes fo much Water as it receives from Rain and Rivess flowing into it. There are two Hypothefes among Philofophers; one is, that the Water of the Sea is carried, by fubterraneous Conduits to the Springs of Rivers, and, in it's draining thro' the Fifs fures, lofes it's Saltnefs: the other is, that i t happens by the V_{2} pours that are drawn up from it's Surface. The former is now re-
jected by moft, it being difficult, if not impoflible, to explain how the Water of the Ocean, being more depreffed than the very Mouths of the Rivers, can come up to their Springs, which are, for the molt part, on very high Mountains; but in the latter Hy pothefis we have no Occafion to explain this, neither to hinder the Growth of the Ocean, nor to fupply the Springs with Water; both which may be more eafily done by the Vapours, which we certainly know to be drawn up from the Surface of the Sea.

The quantity of Vapours drawn up from the Sea was tried by Dr Halley, who made the following Compatation. Pbilof. Tranfact. N ${ }^{\circ}$ 189. Page 366.

By an Experiment made with great Care he found that Wa, ter, falted to the fame Degree as is common Sea-Water, and heated to the fame Degree of Heat, which is obferved to be that of Air in our hotteft Sum-

PROPOSITION XV.

Some Parts of the Ocean differ in Colour from otbers.
W E obferve that towards the North Pole, the Sea feems to be of a black Colour, and in the Torrid Zone of a dufky Colour, and in other Places of a green Colour. Upon the Coaft of Nere Guinea, the
mers, to exhale the thicknefs of a fixtieth Part of an Inch in two Hours. From whence it appears that a Bulk of Water a tenth Part of an Inch high will be exhaled into Vapours in twelve Hours.

So that if the Superficies of the whole Ocean, or a Part of it, as the Mediterranean Sea be known, it may alfo be known how much Water arifes in Va^{2} pour from it every Day; fuppofing the Water to be equally hot with the Air in Summer.
"For from what hath been 4 laid down, a Superficies of " ten fquare Inches emits daily es a cubic Inch of Water; " one fquare Foot, half a " Pint; a Square whofe fides " are 4 Feet, one Gallon; a *f fquare Mile, 6914 Tuns; "c and one Degree fquare, (fup${ }^{6}$ pofed confifting of 69 Eng* lifb Miles) 33 Millions of "Tuns."

This learned Gentleman eftimates the Mediterranean to be about forty Degrees long, and four broad; allowances be. ing made for the Places where it is broader by thofe where it is narrower, fo that it's whole

Superficies may be accounted one hundred and fixty fquare Degrees; and confequently the whole Miditerranean mult lofe in Vapour, according to the foreftated Proportion, in a Summer's Day, at leaft five thoufand two hundred and eighty millions of Tuns. For what quantity of Water is licked off the Surface by the Winds, (which is even more fometimes than is exhaled by the Heat of the Sun) feems impofible to be reduced to any Rule.

It remains that we compare this quantity of Water with that which is carried daily into the Sea by the Rivers, which is very difficult to do, when we can neither meafure the Breadth of the Chanels of there Rivers, nor the Velocity of the Currents. One thing is left, that a Comparion being made between thefe and the River Tbames, and by fuppofing them rather greater than they are, we may have a greater quantity of Water than is really poured by them into the Mediterranfan.

The Mediterramean receives thefe nine confiderable Rivers; the Iberus, the Rbome, the Fiber, yellow: In Streights, or narrow Seas, it appears whitifh. Upon the Coaft of Congo, not far from Baya d'Alvaro, where the fmall River Gonzales falls into the Sea, the Water is of a reddifh Colour which Tincture it receives from a red mineral Earth, thro' which the River flows. But the moft famous for it's Colour is the Arabian Gulph, being therefore called the Red Sea. Some will have it to be only a bare Name, and taken from Erytbrus, fome time King on that Coaft; others will have it to be called red from a certain Brightnefs peculiar to it, which is caufed by the reflected Rays of the Sun (l). But the moft probable Opinion, and which
the Po, the Danube, the Neifer, the Bory/benes, the Tanais, and the Nile; all the reft being of no great Note. Each of there Rivers, this ingenious Gentleman fuppofes to be ten times greater than the Tbames, not that any of them is fo great in Reality, but to comprehend with them all the fmall Rivulets that fall into the fame Sea.

He fuppofes the River Tbames, at Kingfion Bridge, where the Flood feldom reaches to be in breadth about 100 Yards, and in depth 3 ; and the Water to run two Miles an Hour. If therefore the breadth of the Water, 100 Yards, be multiplied by 3, the depth, and the Product 300 fquare Yards by 48 Miles, or 84480 Yards, which the Water runs every Day, the product will be 25344000 cubic Yards of Water, or 20300000 Tuns that are carried every Day into the Sea.

Now if each of the aforefaid nine Rivers yield ten times as
much Water as the Tbames; it will follow, that each of them carries every Day into the Sea 303 Millions of Tuns: and the whole nine, 1827 Millions of Tuns in a Day.

But this is but little more than one third of what is proved to be raifed, in Vapour, out of the Mediterranean in twelve Hours time. Hence it appears that the Mediterranean is fo far from increafing or overflowing by the Rivers running into it, that in a fhort Time it would rather be evaporated, and drawn out, unlefs the Vapours that it exhaled returned in Dew or Rain upon it.

Jurin's Appendix.
(l) Some will have this to be the fame with Efau or E dom, who firt inhabited Idumea, a Country near the Arabian Gulph, from whence, fay they, it came to be called the Red-Sea, viz. from Edom, i. e. Red.
is confirmed by Experience, is, that it came to be fo called from the red Sand that lies upon the Shore, and is often contrary to it's Nature, mixed with the Water by the vehement Flux and Reflux of the Sea, which is extraordinary in this Gulph; infomuch, that it toffes it to and again like Afhes, and keeps it from falling to the Bottom by it's violent Agitation. This is related by Sailors, who tell us, that it fometimes appears as red as Blood; but if it be kept in a Veffel without Ahaking, the red Sand will fubfide, and may be feen in the Bottom. It very often happens, that violent Storms blowing from the Red-Sea, towards Arabia or Africa, carry with them fuch Heaps of red Sand, as to cover whole Caravans, or Troops of Men and Beafts, whofe Bodies in time are thus converted into true Mummy. There are other Opinions among Authors, about the Name of this Gulph, but they are all of no Weight, as appears from Experience.

WHETHER the fame or fome other Caufe, hath urged Mariners to call the Gulph of California or (Vermejo) the Red-Sea, I have not yet found obferved by Authors.

PROPOSITION XVI.

Tbere are certain Peculiarities obferved in fome Paris of the Ocean.

THE Sea called by the Portuguefe di Sargafo, begins about the Salt Iflands, nor far from Cape Verd, and extends itfelf from the $20^{\text {th }}$ Degr. of North Latitude, and to 34 Degr. South. It feems to be of a green Hue, tho' this be not it's proper Colour, but owing to a certain fmall leaved Herb, (not unlike Water-creffes) which we call the SeaLentile, or fmall leaved Parney, but the Portuguefe Sargaffo. The Leaves of this Weed are fo mutually

Chap. 13. of Univerfal Geograpby. 225 tually intermixed one with another that they cover the Surface of the Ocean in this Place; fo that the Water can fcarcely be feen, and Sailors afar off take it to be an Ifland or green Fields; nor can they fail thro' this Knot of Herbs unlefs they be driven by a tolerable Wind. The Herb bears a fmall Berry, not unlike our red Currants, but infipid and hollow within. Whence they proceed is uncertain, not from the Land for that is too far off this Sea, nor from the Bottom (as I think) becaufe the Ocean is here of a vaft Depth and in many Places unfathomable.

BETWEEN the Cape of Good-Hope and the Inands of Tritan de Cunba, there are feveral long Stalks like Reeds of a confiderable thicknefs, found floating on the Water, and thefe very often are entangled with Sea-Alkanet, or with Sargaffo. The Sailors call them Thrombs, and they take it for a fure Sign if they meet with it at Sea, as they are failing to India, that either they are near the Cape of Good-Hope, or have paffed it.

U P O N the Coaft of the Inland of Madagafcar, the Ocean cafts out red and white Coral, which grows like a Shrub under Water: and tho' they are foft in fome Places, yet between Madagafcar and Africa, there are faid to be Rocks of hard Coral (m).

UPON the Coaft of Prufia in the Baltic, the Sea cafts up excellent Amber, which the Inhabi-
(n) Mr Guifony is of Opinion, that Coral is fo far from being a Plant that 'tis a meer Mineral, compofed of much Salt, and a little Earth; and that it is formed into that Subftance by a Precipitation of diversSalts, that enfues upon the Encounter of the Earth with thofe Salts. This Sentiment he confirms by

VOL.I.
alledging that he can fhew a Salt of Coral, which, being caft into Water, and there diffolved, upon the Evaporation of that Water by a gentle Heat, is prefently coagulated and converted inta fore of fmall Sticks refembling a little Foreft. Pbilof. Trarf. abridged by Lazvthorf, Vol. 2. Page 493. $Q{ }^{Q}$
tants of Wire, when certain Winds blow.

THE Ocean cafts up Ambergris only in the Torrid Zone, (if we may believe fome Authors) viz. at the Shore of Brafil (where a Dutch Soldier once found a Piece weighing five hundred Pound, and prefented it to Count Maurice of Nafau); alfo at Madagafcar, at the Cape of Good-Hope, at the Inand of Maurice (by the Portuguefe called de Cerne), at Sumatra, and other Indian Inlands. Garcias relates, that there was a Piece one time found of two thoufand Pound Weight, and that fome Inands are all of Ambergris; but he does not tell us where they are fituated (n).

THE Etbiopic Ocean, at Guinea, Congs, and Angola, has this peculiar Property; that Shells as green as Grafs ftick to the Sides and Keels of Ships; while they remain or fail there, which retard their Courfe and eat out the Timber.

UP ON the Coaft of Bretagne in France, wild Fowls are gerserated on the Sides and Keels of Ships, being at firft unfhapely, but afterwards are formed by degrèes, and having their Bills faftned into the Wood, they begin to move, and at laft pull themfelves off, and fwim in the Sea like Ducks. [Thefe we call Barnacles.]
(n) Ambergris is found in feveral other Places; as at Cape Comorin, there was taken up a Piece of three hundred Weight, and another weighing fifteen hundred Pound; at Am -bergris-Point in Famaica there was found a Piece one hun. dred and fifty Pound Weight; and in feveral Places without the Torrid Zone, as upon the Coaft of New England, on the weflern Coalt of Ireland, \&c.

Some will have it to be the Wax or Honey of fome living Creature; others fay it iffues out of the Root of a Tree, that grows in the Sea, like Gum; others that it is a Bi tumen, and comes from the Entrails of the Earth, which is the mof likely Opinion. See Pbilof. Tranf. No 92. Page 6ir. No 232. Page 711 .and No 263. Page 573.

THE Excrement of the Ocean, which we call Froth, is obferved to float in feveral Places, and more in fome than in others.

THERE are found Water Lenti's in feveral Parts of the Ocean, as between England and France, upon the Coaft of the South Continent, and elfewhere.

O N the Coaft of Malabar and Cambaya there are found Serpents upon the Surface of the Water: from whence Sailors guefs at their approach to thefe Countries.

A B OUT four Leagues from Nere-Spain, feveral Roots, Reeds, and Leaves, like thofe of the Fig-Tree, float to and again, upon the Water, which they commonly eat ; and their Tafte is fomething like Cabbage.

WE read in the firft Voyage of the Dutch to the Streights of Magellan, that on the twelfth of Fanuary 1599. the Water of the Ocean, not far from the Mouth of the Silver River, (Rio de Plata) appeared of a red and bloody Colour ; but when they had drawn up a Bucket, and obferved it more narrowly, they found in it an innumerable Multitude of little Worms of a red Colour, which, being taken into their Hands, leaped up and down like Fleas. Hence the Seamen call them SeaFleas *, and believe that they are vomited by Whales, at a certain Time of the Year. Others think they proceed from an innumerable Company

[^11]BUT this is not the Place for treating of Animals of different Kinds that are found in different Parts.

PROPOSITION XVII.

Why the Sea appears bright and Bining at Nigbt; ejpecially if the Waves are violently agitated with a Storm.

THIS Phænomenon requires the Knowledge of that difficult Point, the Caufe of Colours. The Opinions of Philofophers are divided about it. They that explain Colours by certain and various Motions beft folve the Phænomenon ; the more accurate Explication of which belongs to Phyfics (0).

- when he was fcarce gotten up
${ }^{6}$ to enquire what was the * matter, his Maid, half dead

6 with the fright, came run-

- ning, and fighing told him,
- that all the Water of Leyden
- was changed to Blood.' The Caufe of which, upon examination, he found to be from the numerous Swarms of thofe P_{u} lices.

The Caufe of this Concourfe and Appearance of thofe little Infects, Dr Derbam fays is for their Coitus. At which time they are very venereous, frisking, and catching at one another; and many of them conjoined Tail to Tail, with their Bodies inclined towards one another.
(o) The following Query of

Sir IJaac Nezoton will perhaps give us the beft Notion of this Appearance. ' Do not (fays he) - all fixed Bodies, when

- heated beyond a certain De-
' gree, emit Light, and fhine?
- And is not this Emiffion - performed by the vibrating - Motions of their Parts ? And - do not all Bodies, which a-- bound with terreffrial Parts,
- andefpeciallywith fulphureous
- ones, emit Light as ofren as
- th. fe Parts are fufficiently a-- gitated, whether that Agita-- tion be made by Heat, or by
- Friction, or Percuflion, or Pu-
- trefaction, or by any vital Mo-
' tion, or any other Caufe? as - for Inflance ; Sea-Water in a
' raging Storm, E®\%. Optics - Page 314.

Chap. 13. Of Univerfal Geography.

PROPOSITION XVIII.

The Ocean, and indeed all Waters, caft on the fore terreftrial Bodies, efpecially about the Time of. FullMoon.

IT is not difficult to explain the Reafon of this Property, which is found to be true by Experience. For the Water being in Agitation continually, either one way or other, carries with it the terreftrial Bodies towards that Part whereto it is moved: which is always towards fome Shore, where the Motion ceafing they are left upon the Sand.

BUT this Agitation of the Ocean is greateft at the Full-Moon.

THEREFORE their Opinions are abfurd who believe the Ocean to be a fenfible living Creature, and that it continually purgeth itfelf of Dregs and terreftrial Bodies. The Reafon of it is here plain.

Q3
CHAP.

C H A P. XIV.

Of the Motion of the Sea in general; and of it's Flux and Reflux in particular.
PROPOSITION J.

Water bas but one natural Motion, by wobich it moves from a bigber to a lower Place. And if the adjoining Places are of an equal Altitude, or bigber than the Superficies of the Water, it naturally refts, and is not moved out of it's Place but by fome external Caufe.

COMM ON Experience manifefts the Truth of this Propofition. For if you take a Veffel of Water and move it, the Water will fluctuate, and be in Motion, 'till no part of it be higher than another ; that is, 'till it's Superficies be fipherical, as was faid in Chapter xiii. And although perhaps this Motion may proceed from an external Caufe, viz. the Preffure of the Atmofphere, or the Motion of the Air round the Globe; yet becaufe there are great Difputes about this Caufe, and the Motion is fo apparent in the Water itfelf, that it doth not feem to proceed from any external Agent, therefore it may be called natural, to diftinguifh it at leaft from other Motions of the Water. And this Motion is towards that Part which is more depreffed.

PROPOSITION II.

When any Part of the Ocean is moved, the whole is moved, or all the other Parts of the Ocean move fuccefively; but the Motion is greater by bow much it is nearer the Part firft moved.

BECAUSE when one part of the Ocean is moved, it neceffarily changes it's Place, and leaves that it was in, to be taken up by the Water that was next it ; whofe place is again fupplied by the Water next that, and fo on. But the Motion becomes lefs in the more remote Parts; becaufe that there the Water was firft moved, the next to it rufhes in, not from one Part, but all round about ; fo that it leaves a round Space like the Periphery of a Circle, which is fupplied from a larger Periphery, and that again from a larger, and fo on. But the greater the Periphery is from whence the Water flows, the lefs is the progreffive Motion inwards, being diftributed into a larger Space. Juft as, when a Stone is thrown into the Water it forces it into a Round, and that forces the next Water to it into a larger Round and fo on; and the further thefe Peripheries are from the Immerfion of the Stone, their Motion is diminifhed and lefs fenfible; and tho' there may at laft feem to be none all, yet there will be ftill fome very fmall Undulation, except it be hindered by another Motion of the Water.

PROPOSITION III.

To find wobich way the Current of the Sea fets.
CHUSE a Time, if poffible, when no great Winds are ftirring, and caft a Body into the WaQ4 ter main there immoveable; then, when the Body is carried by the Current a little way from the Place where it was thrown in, let another Boat be placed there; and obferve how the one Boat bears from the other, and you have the Point of the Compafs toward which the Current fets (a).
PROPOSITION IV.

The Motion of the Sea is either direit, vortical, or tremulous.

I call the Motion direct, when the Water runs towards a certain Point; and vortical, when it turns round in a Whirl-Pool, and is at Times abforbed and vomited up ; and tremulous, when it quakes, and is troubled without the leaft Wind. We fhall defer the Confideration of the two laft to the end of this Chapter ; and treat, firft, of the direct Motion, which we fhall call, in general, the Motion of the Sea.

PROPOSITION V.

Of the Motions we obferve in the Sea, fome are general, fome particular, and others accidental.
(a) The Method that Sailors commonly ufe, in the Gulph of Mexico, to keep the Boat immoveable where the Sea is deep, and perhaps not to be founded is this. They fink downa Plummet of Lead about forty or fifty Pound Weight, to a certain number of Fathoms deep, as they are taught by Experience, and tho' the Lead is nothing near the Bottom, yet will the Boat turn Head againlt the Cur-
rent, and ride as firmly as if it were fatened by the itrangelt Cable and Anchor to the Bottom; this Method will perhaps fucceed in feveral other Places where there are under-Currents, fuch as have been obferved in the Dozms, at the StreigetsMouth, and in the Baltic. See Dr Stutb's Oblervations in a Voyage to the Caribbee Inands, Pbilo. Tranf. No 27.

Chap. 14. of Univerfal Geograpby.
I call that a general Motion of the Sea, which is obferved in all it's Parts, and at all Times.

I call thofe proper or particular Motions, whereby only fome Parts of the Ocean are moved, which are twofold, either perpetual or anniverfary; the former continue without Ceffation or Intermiffion; the latter are inconftant, and only obferved at fome certain Months or Days.

THE accidental Motions of the Sea are fuch as now and then happen, without any regular Order; and fuch as thefe are infinite.

PROPOSITION VI.

The Winds caufe the accidental Motions of the Sea, by blowing the Waters toward fome oppofite Point; nor is the Sea ever free from fuch Motions.

THE Wind, being nothing but a violent Motion of the Air, and a Preffure of it towards the Earth, endeavours to impel the Water of the Sea out of it's Place; and becaufe the Sea is a Fluid, and cannot refift the Force and Preflure of the Air, it is hereby moved out of it's Place, towards the oppofite Point, and drives the adjacent Water before it, and that again the Water before it, and fo on.

A N D fince there is always fome Wind in the Air towards one Point of the Compafs or another, and very often towards different Points, in divers Countries, at the fame Time; it follows, that fome of thefe Motions continually affect the Sea, but more fenfibly where the Wind blows hardeft; becaufe it being a Fluid is foon put in Agitation by fo violent an Agent,

PRO.

PROPOSITION VII.

The general Motion of the Sea is twofold; the ore is conftant, and from Eaft to Weft: the otber is compofed of two contrary Motions, and called the Flux and Reflux of tbe Sea, by wobicb, at certain Hours, it flows towards the Sbores, and at otbers back again.

THA T the Ocean is continually moving from Eaft to Welt, is chiefly proved from the Motion of the Sea which lies between the Tropics in the Torrid Zone; where it is ftrongeft, and lefs impeded by other Motions.

THIS Motion of the Sea is manifeftly perceived by thofe that fail from India to Madagafcar, and Africa ; alfo in the Pacific Ocean between NewSpain and Cbina, and the Moluccas; likewife in the Etbiopic Ocean, between Africa and Brafil.

THUS the Currents fet Atrongly, and run with a rapid Motion, from Eaft to Weft, thro' the Streights of Magellan; which induced the firft Difcoverer (whether Magellan, or fome other before him) to conjecture, that there were Streights thro' which they might fail out of the Atlantic into the Pacific Ocean. Ships are carried by the Currents, from Eaft to Weft, thro' the Streights of Manilba, and alfo thro' the little Chanels between the Maldivies. The Sea runs imperuounly into the Gulph of Mexico, between Cuba and Y_{u} catan, and flows out again, thro' a rapid Chanel, between Cuba and Florida. There is fo rapid a Flux into the Gulph of Paria, that the Streights are called the Dragon's Faw. This Motion is alfo remarkable at the Land of Canada. The Sea feems to run out of the Tartarian Ocean thro' the Streights of Waygats, as appears by the fetting

CH ap. I4. of Univerfal Geograpby. 235 of the Current, and the great Flakes of Ice which are commonly found in thefe Streights. Upon the northern Coaft of America, the Pacific Ocean flows towards the Streights of Anian; there is alfo a Current from $\mathfrak{F a p a n}$ towards Cbina; and another from Eaft to Weft, thro' the Streights of $M a$ caffer. In fhort, the whole Atlantic Ocean makes towards the Shores of America, and the Pacific from them, as is moft remarkable about Cape Correntes, between Panama and Lima.

PROPOSITION VIII.

The Winds frequently cbange the general Motion of the Sea, efpecially thofe called Periodical Winds, or Monjoons, which zve ball treat of in Cbapter xxi.

BECAUSE thefe Winds blow moft frequently from the North or South, or from other collateral Points, they muft needs obftruct the general Motion of the Sea, which is from Eaft to Weft, and caufe it to turn afide, from the Weft, towards the North-Weft, or South-Weft. And even the conftant, or Trade-Winds, which feldom blow directly from the Eaft, but from fome other collateral Points, change this general Motion of the Sea in many Places. Alfo the North Winds make a moft fenfible Difference in this general Motion in the northern Ocean, where thefe Currents are not ftrong, except in a few Places.

PROPOSITION IX.

The Caufe of tbis general. Motion of the Sea from Eaft to Weft is uncertain.

THE Arifotelians (tho' neither they, nor their Mafter, nor any European Philofopher, had the leaft Notion of thefe. Things, before the Portuguefe failed thro' the Ocean in the Torrid Zone) tuppofe, that it is caufed by the Prime Motion of the Heavens, which is common not only to all the Stars, but even, in part, to the Air and Ocean; and by which they, and all things, are carxied from Eaft to Weft. Some Copernicans (as Kepler, $\mathcal{E}^{2} c$.) altho' they acknowledge the Moon, to be the prime caufe of this Motion, yet they make the Motion of the Earth not a little contribute to it, by reafon that the Water, being not joined to the Earth, but contiguous only, cannot keep up with it's quick Motion towards the Eaft; but is retarded and left towards the Weft; and fo the Sea is not moved from one Part of the Earth to another, but the Earth leaves the Parts of the Sea one after another.

OTHERS, who are fatisfied with neither of thefe Caufes, have recourfe to the Moon; which they will have to be the Governefs of all Fluids, and therefore to draw the Ocean round with her from Eaft to Weft. If you afk, how fhe performs this? They Anfwer, it is, by an occult Quality, a certain Influence, a Sympathy, her Vicinity to the Earth, and fuch like. It is very probable indeed the Moon, fome way or other, caufes this Motion, becaufe it is obferved to be much more violent at the New and Full Moon, than about the Quadratures, when it is, for the moft Part, but fmall.

THE ingenious des Cartes mechanically explains how the Moon may caufe this Motion, both in the Water, and the Air. He fuppofes, according to his general Hypothefis, that there are an infinite number of Atoms, which reivolve about the Earth, and fill up the Space be- to leave any Vacuum ; this Space he calls the Earth's Vortex (b). Let FEHG (Fig. 22.) be the Earth, 2143 the Water, 6587 the Air, BADC the Vortex of the Earth, and B the Moon. Now, fays he, if there was no Moon in the Vortex BADC, it's Particles would without any Impediment revolve about the Center T ; but fance the Moon is there, the Space, thro' which the celeftial Matter flows, is narroweft between B and T ; therefore this Matter flows fwifter between B and T, and by that means preffes both the Superficies of the Air at 6, and of the Water at 2, more than if the Moon had not been in the Diameter of the Vortex B D: and becaufe both the Air and the Water are Fluids, and eafily give
(b) The Flux and Reflux of the Sea, which des Cartes has endeavoured to explain, by an imaginary Plenum and Vortices, may be more eafily and fully explained upon other Principles (as fhall be fhewn hereafter); for thefe are mere Fictions, and no way agreeable to Nature and Motion, as appears from the following Arguments.

1. If fome Vacuities were not fuppofed to be interfperfed among the Particles of Bodies, it would be very hard to conceive how Motion could be any way performed. For if we fuppofe every Place to be abfolutely full, a fmall Body cannot move ever folittle, without moving all the Bodies in the Univerfe, and whither, or to what Place they fhould move, when all Places are already full is not eafy to conceive.

- 2. Since Comets are carried ' with a continual Motion thro' ' the heavenly Spaces, from - every Part, and all Ways, and - to all Parts; it is evident - from thence, that the heavenly - Spaces mult be void of any - fenfible Refiftance, and con-- fequently of any fenfible - Matter. Newton's Optits, - Page 310.

3. The Hypothefis of Vortices, and a Plenum, directly contradicts the Aftronomical Phænomena, and tends more to confound the celeftial Motions than to explain them, See Newton's Princip. Book 2. Schol. to Prop. 53, and the general Schotium at the end; and Clarke's Notes upon Rekault's Phyfics. Part 1. Chap. 8. Art. 2. and on Part 2. Chap. 25. Art. 22. under B, at 2, and higher under A, at 1. And while the Earth is turned from E, by F, towards G, or from Weft to Eaft, the fwelling of the Water 412, and of the Air 856, which is now higheft at E, moves by little and little to the weftward, and in fix Hours time is higheft at the Part of the Earth H, and after twelve Hours at G. Hence it follows, that both the Water and the Air are perpetually moving from Eaft to Weft. Thus far des Cartes. The ftrefs of his Demonftration lies here; that the Earth EFGH, and Water 1234, are revolved round the Center T, together with the celeftial Matter in theVortex, between BADC and 6587 ; but the Moon, being in B, makes the Space B6 narrower, whereby the celeftial Matter is fqueezed thro', and in it's Paffage preffes the Air and Water below B, at 6 and 2, towards 5 and I , and while E paffes beneath B , it is preffed towards H and F , and fo round. Nor doth this celeftial Matter, ftrained between B and 6, rebound upward being fuppreffed, becaufe all things are full of Matter. And tho' it prefs the Air and Water from 62 F not only towards the Weft E 15, but alfo towards the Eaft ${ }_{73} \mathrm{G}$, yet becaufe the Parts between F and G , to the eaftward, are, by degrees, removed from the Streight B6, and the Parts towards E, to the weftward, do more and more approach it, therefore this Force is chiefly received by thefe.

BUT the following Particulars feem wanting in this ingenious Explanation.
r. IT fhould then follow, that the Sea would fettle when the Moon approached it, and rife in thofe Places that are diftant a Quadrant, or fix Hours, from it, viz. it would fall at 2, where the Moon is vertical, and rife at 6. But this is contrary to Experience; for at 2, under Abfurdity may be avoided, we fhall fhew in the following Propofition.
2. IT is not plainly thewed (des Cartes himfelf totally omitting it) why, when the celeftial Matter in the Streight B6 preffes the Air at 6, and the Water at 2, it is not equally moved towards G37, feeing that the Earth, and Air, and Water, are all carried that way, as well as the celeftial Matter, which fhould therefore enforce the Air and Water rather towards the Eaft than the Weft.
3. THE Moon approaching any Sea, there fhould a ftronger Wind blow from Eaft to Weft than at other Times; but this feldom happens.
4. I T is more likely that the Sun fhould caufe this Motion of the Air, and thefe conftant Winds, becaufe in many Places they are obferved to blow frefher a little before, or about, Sun-rifing, when it is diftant a Quadrant from the Vertex of the Place (c). Thefe things are worthy to be confidered in the aforefaid Explication, not to fay any thing for or againft the Hypothefis itfelf.

I very much doubt whether this Motion of the Sea has any relation to the general, or TradeWinds; becaufe thefe Winds, in the Torrid Zone, are conftant; and therefore fhould caufe the Motion of the Water to be conftant alfo (d). Indeed when the Wind blows harder the Motion is perceived to be greater; but this is no Argument that they have a Dependance, or proceed one from another. What hinders is, that there appears to be
(c) See the Notes upon fant one, without doubt, is efChap. xxi. Prop. 2. below, fected by the Trade-Winds, where the Caufe of thefe TradeWinds is explained.
(d) As periodical Currents are produced by the fhifting Winds or Monfoons : fo this con-
to Weft, tho' notwithftanding the Moon may interfere, and alter or divert it's ordinary Courfe. and that of the Moon, for when this approaches the other, it caufes it to fwell at 2, and the Currents are obferved to fet ftronger to the weftward at the New and Full Moon, than at the Quadratures. This laft is excellently explained by des, Cartes's Method; for fince the Moon is nearer the Earth at the New or Full than when fhe is in the Quadratures, the Paffage for the celeftial Matter, B 0 , is then made narrower, and therefore the Preffure is greater (e).

IF any fhould alledge, that perhaps the greater Light of the Moon, at Full, caufes the greater Intumefcence; I anfwer, that at the Change all her Light is taken away; which fhews that Light is not the Caufe of this Motion, but rather that Preffure of des Cartes, which we fhall further explain below.
PROPOSITION X.

The fecond general Motion of the Sea is it's Flux and Reflux, by which, in about twelve Hours and a balf's Time, the Water is found to flow towards the generality of Sbores, and to ebb back again, viz. to flow when the Moon approacbes the Meridian Circle above or below; and to ebb when it departs from thence towards the Horizon.
(e) ' Neither the Moon's - greateft Diftance, nor her

- leaft, falls in the Quadratures
- but both there and in the
- Conjunction or Oppofition;
- contrary to the Opinion of
- des Cartes; who afferts, that
- the Orbit is elliptical indeed,

E but fo that the leffer Axis of

- it is always in the Conjun-
- Ctions and Oppofitions, or
' paffeth thro' the Center of
- the Sun, and the greater
- in the Quadratures. Which
- Affertion is very wide of the
- Truth. Wbifon's Aftrono-
- mical Lectures, Page 107.

W E are firft to enquire whether the Sea flows towards one certain Point by this Motion, viz. from Eaft to Weft, or from Weft to Eaft.

FOR the Shores of Bays, and the Chanels of Rivers, where this Flux and Reflux is chiefly obferved, more than in the main Ocean, are divers ways extended; fome from Weft to Eaft as the Medilerranean Sea, and others from South to North, as the Arabian Gulph, $\mathcal{E}^{2} c$. And in all thefe the Water flows thro' the Streights towards the furtheft Point of their extent ; and therefore in different Bays, this Flux of the Ocean tends towards divers Points of the Compafs. We muft therefore firft be refolved, whether this Flux, or Motion, tends indifferently to any Point, or only. obferves two, viz. the Weft in flowing, and the Eaft in ebbing; or even only the Weft in both ebbing and flowing? In my Opinion the laft is trueft, viz. that the whole Ocean is moved from Eaft to Weft, both in it's Flux and Reflux, and that the difference is, that in it's Flux it is moved with greater violence and in a greater Quantity: but in it's Reflux (or more properly it's Deflux) tho' it be not moved a contrary Way, yet it feems to be fo, becaufe there flows a lefs Quantity of Water.

HENCE we may determine, that the Flux and Reflux of the Sea is no way diftinct from that general Motion, which we explained in the former Propofition, whereby the Ocean is perpetually moved from Eaft to Weft; for it is only a certain Mode or Property of that Motion. And therefore if this Motion be obferved, and rightly confidered in the main Ocean, where it is not obftructed, we fhall find it not to be fo much a Flux and Reflux of the Sea, as a Flux and Deflux, or (that we may diftinguifh, by proper Terms, the Quality of the Motion or Flux from the MoVOL. I.

R
tion Swelling and Swaging of the Sea.

FOR the Sea perpetually flows from Eaft to Weft, and only feems to flow back again, when it's more violent Force is flackened and wafted, which a little before was quickened and augmented. But this is called the Reflux, becaufe the Sea feems, on Shores and in Bays, to approach and retire by fits, which is not owing to the quality of the Motion itfelf, but to the Situation of the Shores and Bays, which requires that the Water fhould fall back to the contrary Point; but the fettling of the Sea in general doth not proceed from the Situation of the Shores, but from the quality of the Motion of the Water.

BUT the Motion of the Sea can by no means be eftimated by it's approach to the Shores, for whatever this Motion be, or to what Point foever it is made, it will always fluctuate towards the Shores; which happens by reafon of the fluid Na ture of the Water.

TH A T the Sea moves towards the fame Point, that is, from Eaft to Weft both in the Flux and Reflux (or Swelling and Swaging) and never moves the contrary way appears from the following Obfervations. I. In the main Ocean between the Tropics, there is no other Motion perceived than this from Eaft to Weft. 2. In Streights that join the Parts of the Ocean and run directly Eaft and Weft, as the Streights of Magellan, Manilba, Fava, and others among the Indian Iflands.; in thefe, I fay, the Sea rifes and fettles in 32 Hours Time, but in fettling it doth not flow back out of the Streights to the ealtward; but is carried by other Paffages, ftill to the weftward; which is a plain Sign that this Ebbing and Flowing are not two contrary Motions, but a Modification of the general Motion from Eaft to Weft, reprefent this as a double Motion to and again.

IT is to be underftood, that when we fay this Motion is from Eaft to Weft, we do not mean punctually the two cardinal Points, but include all their Collaterals, even to the North and South Poles, towards which however the Motion is weaker.

PROPOSITION XI.

To explain the Caufe of the Swelling and Swaging of the Sea, vulgarly called it's Flux and Reflux (f). THERE
(f) Sir IJaac Newton moft fuccersfully explains as well the Flux and Reflux of the Sea, as moft other Appearances of Na ture, from his univerfal Principle of Gravity or Attraction. Gravitation is a certain Forceimprinted on all Bodies by the Author of Nature, by which they mutually endeavour to accede; but how this Force is exerted we know not. Thus the Globe of the Sun and Planets gravitate mutually towards each other in proportion to their feveral Magnitudes, and Diftances from one another. As to this Earth of ours, it hath but little Communication with the other Planets, whofe Bodies are too fmall to affect us much, at fuch a vaft Diftance; cnly the Sun and Moon are refpected by it, the one becaufe it is placed fo near us, and the other by reafon of the Bulk of it's Body; which tho' it be at a valt Diftance, yet acts with 2 ftrong attractive Force. Fpr a Bady is more
forcibly attracted by how much the Diftance of the Attrahent is nearer, or it's Bulk greater.
:. Thus; Let L (Fig. 23.) be the Moon, fuppofed to be above any Part of the Earth, covered with the Ocean as b; it is evident that this Place, being nearer the Moon than any other Part of the Earth, is more ftrongly drawn thereby, and fwelleth up towards it: But the Water in the Place a being diametrically oppofite to the Place b, and further off from the Moon than the rell-of the Earth, hath a lefs Tendency towards it than the other Parts; and therefore, being left as it were by the Earth, is lifted up, or fwelled, the contrary Way in a. Hence the Water flowing from d to e towards A and B , makes two Protuberances in the Ocean, the one in B directly under the Moon, the other in A juft oppofite to it ; and thefe always fhift and accompany the Moon in it's feeming Motion R 2 2bou.

THERE is no Phænomenon in Nature that hath fo much exercifed and puzzled the Wits of

Philofo-
about the Earth, and oceafion thereby two Floods and Ebbs in the fame Place, every five and twenty Hours.
2. Of thefe two Tides that happen in the Time of one diurnal Revolution in any Place, that is the greateft, wherein the Place cometh neareit the Eminence of the Water A or B. Thus, in fuch a Figure as the laft, let, P_{p} (Fig 24.) be the Poles, \mathscr{E} Q the Equator, FG a Parallel to it, which any place defcribes by in's diurnal Motion; it appears that the two High waters happen in the Place, when it is fituated in G or F, having the Moon in the Meridian ; but the higheft Tide is found in the Point G, which comes neareft the Eminence of the Waters in B. It further appears from the Figure, that the Moon, in the Time of the higheft Tide, is above the Horizon of the Place, if fhe is on the fame fide of the Equator with the Placeitfelf: but if fhe decline the contrary Way, fhe is under the Horizon in the Point A, at the Time of the higheit Tide. For Example, in Europe the diurnal Tides are the higheft of the two when the Moon is found in the elevated Semicircle of the Meridian, or in the Northern Signs of the Ecliptic; but the lowett when fhe is in the Southern Signs.

Moreover, the Height of the Tides is varied generally all over the Earth, according to the day
of the Month and the time of the Year.
3. For, becaufe the attra\&tive Force of the Sun reaches the Earth as well as that of the Moon; when both thefe Forces confpire, or are united, they raife the Waters higheft, and make what we call Spring Tides; but when the Sun depreffes what the Moox heaves up, then bap: pen the lowelt or Neap Tides. Thus we obferve higher Tides when the Sun and Moon in Conjunction or Oppofition, are right over any Place B, or diametrical. ly oppofite over A and B, than whell they are in the Quadratures, viz. when the Sun is in the Point H or I, and the Moos in the intermediate Point A or B. But the Force of the Sun is fmall compared with that of the Moon; becaufe the Semidiameter of the Earth CB, by which the Water in B is nearer the Sun than the Center C, is fcarce fenfible, if compared with the immenfe Diftance of the Sun.
4. Since the Eminences of Water are carried round the Earth by the diurnal Motion, the Motion, Agitation, and Height, of the Tides, are the greater, the larger the Circle is in which the Watersrevolve. So the Moon being in the EquinoEtial, and leading about the two oppofite Eminences of Water in the Equator, makes greaterTides (cateris paribus) than when the is in the Tropics.

Chap. 14 of Univerfal Geography. 245 Philofophers and learned Men as this. Some have thought the Earth and Sea to be a living Creature, which, by it's Refpiration, caufeth this ebbing and flowing. Others imagined that it proceeds, and is provoked, from a great Whirl-pool near Norway, which, for fix Hours, abforbs the Water, and afterwards difgorges it in the fame fpace of Time. Scaliger, and others, fuppofed that it is caufed by the oppofite Shores, efpecially of America, whereby the general Motion of the Sea is obftructed and reverberated. But moft Philofophers, who have obferved the Harmony that thefe Tides have with the Moon, have given their Opinion, that they are entirely owing to the Influence of that Luminary. But the Queftion is, what is this Influence? To which they only anfwer, that it is an occult

Hence allo both the Luminaries, placed in the Equinoctial at the Time of their Conjunction or Oppofition, which happens near the Equinoxes in March, or September, produce the highelt Tides in the whole Year.

Which Experience alfo confirms, becaufe the Sun is a little nearer the Earth in the Winter than in the Summer; therefore the higheft Spring Tides happen a little before the Vernal Equinox, and a litthe after the Autumnal, viz. in February and Olober, rather than precifely upon the EquinoEtial Davs.
5. The librating Motion of the Waters, which are apt to retain the Motion impreffed upon them, and continue to move tho' the Actions of the Luminaries ceafe, make the greateft mengrual Spring Tides (explain'd
in Artic.3.) not precifely on the New and Full Moons, but gene: rally they are the third Tides after them.
6. Things would happen conftantly and regularly thus, if the whole Earth were covered with very deep Sea ; but by reafon of great and fmall Iflands which ftop the Tide, and the Streights between them, alio the Shelves and Shallows along which the Tides are to be propagated, the Variety of this Phrenomenon is almolt infinite, and fcarcely to be explained by this Theory; but when juft Obfervations are diligently made, all thefe particular Caufes may be found out and known. See Newton's Prin. Math. Phil. Book 3. Prop. 24. Greg. Phyl. and Geometr. Afron. Book 4. Prop. 64, 65. alfo Halley's Difertation in Phil. Tranf. No 226.

Jurin's Appendix.

Quality, or Sympathy, whereby the Moon attracts all moirt Bodies. But thefe are only Words; and fignify no more than that the Moon does it by fome means or other, but they da not know how: Which is the Thing we want.

DES Cartes explains it by his general Hypothefis thus: In the forementioned Figure of Propofition 9. let ABCD be the Vortex, with the Earth in it's Center, and which, with the Earth and Moor in it, is carried in a larger Vortex about the Sun. Let M be the Center of the firf Vortex, EF G H the Earth, 1234 the Superficies of the Sea, which for plainnefs we will fuppofe to cover the whole Earth; and 5678 the Superficies of the Air furrounding the Sea. If therefore there were no Moon in the Vortex, the Point T, the Center of the Earth, would coincide with the Point M, the Center of the Vortex; but fince the Moon is about B, the Center of the Earth murt be between M and D ; becaufe, fince the celeftial Matter of this Vortex moves fomething fiwifter than the Earth or Moon, which is carried ouly with it, unlefs the Point T were a little further diftant from B than from D, the Preferce of the Moon would hinder it from moving fo freely between B and T , as between T and D ; and feeing the Place of the Earth in the Vortex is not determined, but by the equal Force of the circumambient celeftial Matter, it is plain that it ought therefore to approach fomewhat towards D . And for the fame Reafon, when the Moon fhall be in C , the Center of the Earth ought to be between M and A , fo that altways the Earth may recede a little from the Moon. Moreover, fince we fuppofed the Moon to be about B , not only the Space between B and T , but alfo that between T and D , thro' both which the celeftial Matter flows, is made fomething narrower; hence it follows, that the celeftial ftial Matter floweth fafter there, and therefore preffech more, both the Superficies of the Air at 6 and 8 , and of the Water at 2 and 4 , than if the Moon had not been in the Diameter of the Vortex BD. Now feeing the Air and Water are both Fluids, and eafily give way to the Preffure, they mult be more depreffed about F and H , than they would be if the Moon were not in this Diameter BD; and alfo more elevated towards G and E, where both their Superficies bulge or are prominent. And further, becaufe the Part of the Earth at F, under B, where the Sea is now loweft, in fix Hours Time will be at G, under C, where it is now highent, and after other fix Hours in H , under D , and fo on: or rather, becaufe the Moon is moving a little in the mean Time from B towards C, fo as to perform the whole Revolution ABCD in a Month, by which the part of the Earth that is now in F under the Moon's Body, will be in fix Hours, twelve Minutes Time, or thereabouts, a little further than G, in that Diameter of the Vortex, which is 90 Degr. diftant from the Place into which the Moon in the mean Time hath moved; therefore the Water will in that Time increafe and be higheft at F, and in other fix Hours, twelve Minutes, whep the Moon is got beyond D , will fettle and be loweft there, $\mathrm{E}^{2} c$. Hence it is plain, that the Water of the Sea muft conftantly ebb and flow in the fame Place, every twelve Hours, twenty four Minutes Time.

THIS is des Cartes's Demonftration, which is very ingenioufly contrived to account both for the Tides that happen when the Moon is in the Meridian of the Place, and thofe alfo that occur when the is in the oppofite Point of the Meridian Circle annder the Horizon,

R 4
BUT

BU T according to what we obfrrved in the ninth Propofition, there are feveral Imperfections in this Demoniftration. As firft, it is a wonder that des Cartes did not confider, that, according to his Demonftration, the Water ought to ebb at 2 and 4 , when the Moon approaches the Meridian B: and, on the contrary, to flow, when the Earth or Moon (viz. either of them) is removed fix Hours from each other; but this is contrary to Experience, for when the Moon approaches the Meridian of any Place, theWaters flow in that Place, and ebb, back again, at it's departure. But both des Carte's Words and Figure fhow the contrary ; fo that to take away the Abfurdity (and in des Cartes's Method) let us fuppofe the Vortex of the Earth ABCD , and the Waters 1234 , to be interfperfed equally about the Center T without any Pratuberance, and to revolve with the Earth and the celeftial Matter between A B CD and 5678. Let us fuppofe again the Moon to happen into this Vortex at B, and therefore the Space T'B to become narrower, and the Water at 2 to be preffed towards E by the celeftial Matter fqueezing thro' it.

THEN while the Water is expelled from 2 to E, I afk where the greateft fwelling will be, whether in the Place E , which is diftant a Quadrant from F (where the Moon is vertical), or in the Place next to F towards E ? If you anfwer, the fwelling is greateft about the former Place E, I deny it, becaufe it is contrary to Experience; but Experience fhews the latter to be true, and even Reafon convinces us, that when the Moon is over the Place F, the Water will be forced from 2 towards 1, which happens becaufe the greateft fwelling is about 2, not about 1 , for here it will be leaft ; hence the Places to the weftward have their Tides later, as we know by Experience. And Reafon and the Laws of Hydroftatics require this.

Chap. 14. of Univerfal Geography.
For if Water be poured in at 2, that it may flow towards E, there will be the greateft quantity of Water at 2, and a little lefs in the next Place, but leaft of all at E ; and the fame Thing will happen if it be expelled or driven towards E . But by the Circumrotation of the Earth, E comes into the Place of F, where at length there will be the greateft Protuberance at E , and the Water will be repelled towards H .

THEREFORE des Cartes's Figure and Demonftration is to be changed, that the fwelling may arife fomewhere about 2, viz. where the Moon is vertical. What more might be faid here we refer to our Treatife upon des Cartes's Pbyjics.
PROPOSITION XII.

The general Motion of the Sea from Eaft to Weft is Aronger, and the Tides are bigber at New and Full Moon, than at the Quadratures.

THE Truth of this Propofition appears from Experience. For People that ufe the Sea teftify, that at New and Full Moon, the Face of the Ocean is conftantly rough and troubled, but calm and quiet at the Quadratures. This is eafily accounted for by the aforefaid Hypothefis; for when the Moon is at the New or Full, fhe is nearer the Earth than at any other Time of her Age, and is furtheft diftant in her Quadratures, as is fhewn by Aftronomers (g). But when the Moon is nearer the Earth, that is, when the Space BT is lefs, the celeftial Matter being hindered, or obftructed, preffes with greater force the Water from 2 towards I. But happens otherwife in the Quadratures.
(g) This is falle. See tbe Note (e) above.

YET in fome Places there are higher Tides at the Full Moon than at the New, which I cannot account for, unlefs they be the Effects of it's greater Light at that time. Nor can it be otherwife explained, why at the Full Moon Vegetables and Animals are impregnated with a greater quantity of Sea Moifture, than at the New, tho' even then the Tides are every whit as high. It is very wonderful what one Twift, a Dutchman, relates in his Defcription of India. He fays, that in the Kingdom of Guzarat (where he lived many Years) their Oyfters, and Crabs, and other ShellFifh, are not fo fat and juicy at the Full Moon as at the New, contrary to their Nature in all other Places. Nor is it lefs admirable, that on the Coaft of the fame Kingdom, near the Mouths of the River Indus, the Sea fwells, and is troubled, at the New Moon, when not far from hence, viz, in the Sea of Calicut the greatef Rife of the Waters is at the Full. But it is requifite that we fhould have repeated Enquiries and Obfervations about thefe Matters, before we pretend to folve their Phænomena.

PROPOSITION XIII.

The Flux and Reflux of the Sea varies with the Seafons of the Year, and the Tides are objerved to be bigbeft about the Equinoxes; i. e. at the Spring and Fall; but loweet at the Solfices.

DES Cartes pretends to account for this Phænomenon by his Hypothefis, but I cannot apprehend his Meaning by his Words, nor how it can be deduced from it (b). It is probable, that the Sun and the general Winds may contribute much

[^12]Chap. 14. of Univerfal Geography. 25 年 to raife thefe Tides, when, in the Equinoxes, the Sun is vertical to the Ocean in the middle of the Torrid Zone, and therefore may caufe both the Wind and Water to rage, and the former to agitate the latter. The contrary of which may. happen about the Solftices. Or we may fay, that thefe extraordinary Tides then happen by the fame Reafon, and proceed from the fame Caufe that frequent Rains and Innundations proceed from in thefe Seafons.

PROPOSITION XIV.

In fome Parts of the Ocean, Bays, and Shores, the Tides ebb and flow very bigh; and in otbers but low: and in forne fere Places there are no fenfible Tides at all.

THOSE Places have the greateft Tides; \mathbf{x} : which are in the Torrid Zone between the Tropics, where the Moon, being almoft conftantly vertical, preffes the Water with greater force; 2. thofe which lie directly Eaft and Weft with their Collaterals; 3. thole Bays that are long and narrow; 4. thofe Places where there are but few Inands or Forelands.

THE Tides are therefore greater or lefs in a Place, according as it is fituated or extended.

THE greateft known Tides are obferved in the Bay of Guzarat, at one of the Mouths of the River Indus, and has ftruck many with Admiration. The Water there recedes from the Shore very quick, and leaves it uncovered for a great Space; fo that this Bay is, not without Reafon, thought to be the fame into which Alexander the Great failed, when he attempted to tranfport his Army by Sea into India, but was hindered, as it is reported, by the Sea which retired quick from
from the Shore, and left all his Ships a-ground, fo that he could not proceed further, but thought that the Gods had there fixed Bounds to his Expedition. This Story is reported for a Truth by the Inhabitants of Cambaya. The Caufe of this is the fhallownefs of the Chanel, which makes the Water in it's Ebbing leave fo much more Ground uncovered, tho' perhaps fome other Caufe may confpire with this.

AT the Town of Daman, not far from Surat in India, the Tide rifes and falls two Fathoms and a half, and the Sea recedes from the Shore half a German Mile.
IN the Bay of Cambaya the Tide flows five (or as fome fay feven) Fathoms high, which violent Flux caufes many Ships to be loft by unexperienced Seamen ; for at the Ebb, when the Water falls back, they are frequently fplit upon the Racks.

UPON the Shores and Bays at the Magellanic Streights, there is no conftant Time obferved between the Tides, which ebb and flow irregularly, fometimes in three Hours, and fometimes in twelve Hours; which variety is caufed by the violent breaking of the Sea into thefe Streights, and the frequent Agitation of it by the Winds.
PRODIGI OUS high Tides are obferved about Malacca, and in the Streights of Sunda.
IN the Arabian Gulph, or Red-Sea, the Tide of Ebb is fo great, that as fome of the Antients have writ, (quoted by Scaliger) Mofes, and the Ifraelites, migh, at low Water, have paffed thro ${ }^{\circ}$ it without a Miracle. But this is falfe, for it never ebbs fo much as to leave the Chanel dry.
IN Bullon's Bay, near HudJon's Streights, when Mr Thomas Button, an Englifman, wintered there in the Latitude of 57 Degr. North Latitude, he pberved the Tide of Flood to rife fifteen Foot and above: after, he found it to come up to the fame Height; tho' in neither Hudjon's nor Games's Bay it rifes much above two Foot.

THERE are prodigious high Tides upon the Coaft of Cbina, and about the Inands of Gapan. A T Panama, a Town on the Coaft of America, the Pacific Sea flows very high, and immediately ebbs again; at the Full Moon the Agitation is fo great that it drives the Water into the Houfes of the Town. All along this Shore the Tides of the great South Sea are ftrangely high; fo that in* their Reflux they retreat two Miles of Ground, and in fome Places the Water falls of out Sight.

I N the Bay of Bengal, on the Shore of Siam, the Tide rifes fifteen Foot.

BUT in the Mediterranean Sea, which flows from Weft to Eaft thro' the Streights of Gibralter, there is no fenfible Tide at all; becaufe it's Entrance is fituated oppofite to that Point, to which the Ocean Sea in general flows. It may perhaps increafe a little, but in the main it is not fenfible, only in the Gulph of Venice there is a fmall Agitation perceived, by reafon of the great length and narrownefs of the Bay, which, in the broader Parts of the Mediterranean, is no where perceptible. Therefore the Flux and Reflux of the Sea was unknown to the Grecians, and alfo to the Romans in the Time of Scipio Africanus; and therefore when they found it in other Places, accounted it a Miracle; as appears from the forementioned Expedition of Alexander the Great, and the Wars of Scipio with Cartbage; but in Cicero's Time this was well enough known to the Romans. A fmall Tide is obferved at Marfeilles in France, and an inconfiderable Rifing is perceived along the Coaft of Barbary.

IN the Baltic Sea, and all over the northern Ocean beyond England and Norway, the Tides, are not in the leaft perceptible; nor in the northern Parts of the Pacific Ocean (i). The Reafon is not well known, unlefs we fix it upon the great Di ftance there Seas are from the way of the Moon, and their being extended from Weft to Eaft, and North-eaft, with the many Inlands and Forelands, all which confpire to obftruct the Flux of the Tides in thefe Places. But this cannot be faid of Hud $\frac{n}{}$'s Bay; which is properly extended from Eaft to Weft, to receive the Flux of the Tides; and therefore it is no Wonder if they are much more remarkable here than in the Balitic, or in the northern Ocean.
PROPOSITION XV.

The Flux of the Sea is forced by a frong Impulfe; but the Reflux is the natural Motion of the Water.

THE Flux is caufed by the Preffure of the Moon, or the celeftial Matter, between it and the Sea, and continues no longer than the Caufe forces it: but in the Ebb, the Sea only flows from a higher to a lower Place, which is the natural Motion of the Water.

- (i) The Tides are very fmall in feveral Parts of the Northern Ocean, yet they may be felt in fome particular Places. Thus
on the Coait of Nova Zembla the Water was obferved by Capt. Wood to rife eight Foot. See Note (a) on Chap. 8. above.

$$
L E M M A
$$

Снар. 14. of Univerfal Geograpby.

$L E M M A$.

The Place of the Moon in the Zodiac being known; from an Epbemeris, or by Calculation, or Aftronomicat Obfervation, and alfo it's Latitude, and tbe Hour of the Day; to find, on the Terreftrial Globe, what Place the Moon will be vertical to at the given Hour, and to Sere all the Places that the Moon will pafs over, one after anotber, that Day.

THIS Problem is of great Ufe for obferving the Flux and Reflux of the Sea. You will find the Method of folving it in Chapter xxx. Propofition 14. where it is more commodioufly explained. However the more knowing Reader may anticipate it here, or learn it aforehand from the Rules there delivered.
PROPOSITION XVI.

The Tides are bigheft in thofe Places over which the Moon is vertical, unlefs fome of the Obftacles abovementioned in Propofition 14 binder; but the further any Place is from that, the lefs (crateris paribus) is the Flux and Refux.

BECAUSE thofe Places are more preffed, and the fwelling of the Sea is greater, over which the Moon fqueezeth the celeftial Matter, whereby greater Tides are produced: but where the incumbent Matter is lefs fqueezed, and other Caufes confpire, the Alteration will be lefs.

PROPOSITION XVII.

The Altitude of the Tides are divers in the Same Place at different Times, and they are bigh and low, according as the Moon is further from or nearer to the Zenitb of the Place.

SIN CE the Moon every Day changes her Place in the Ecliptic, fhe will be vertical now to one Place, and then to another, and confequently varies her Diftance from the Zenith of any particular Place. Which being granted, it follows, as a Corollary of the laft Propofition, that the Tides in any one Place are conftantly altering, whether their Variation be fenfible, or infenfible.

PROPOSITION XVIII.

The greateft fwelling of the Ocean, or High-Water, ought to be in that Place when the Moon is in the Meridian Circle (above or below); but in divers Places it is Higb-Water when the Moon is otberwife pofited.

SINCE the Moon, in the Meridian, is nearer any Place than when fhe is in the Horizon, (becaufe the Hypotenufe of any right-angled Triangle is longer than the Perpendicular) it follows (by Propofition 16, of this Chapter) that then it ought to be High-Water in that Place (where the is full South). And when fhe is full North, or in the lower Part of the Meridian Circle, it ought to be alfo High-Water in the fame Place, becaufe, tho' fhe be not there, yet the oppofite Part of the Vortex of the Earth is itraitned, and hath the fame Effect, as if the Body of the Moon itfelf were prefent.

BU'T there are many Places and Shores where it is not High-Water precifely at the Time of the Moon's fouthing or northing in the Meridian Circle, (as the Philofophers of the former Age thought) but perhaps a little before, or after, the makes her appulfe to the Meridian, viz. when fhe approacheth a Vortex fomething diftant from it, Eaft or Weft. Neither doth a full Tide always happen when the Moon is in the fame Azimuth; but it is very often High-Water, efpecially at the New and Full Moon, a little before the conftant Time, or before the Moon approaches that Azimuth. At London it is High-Tide when the Moon is three Hours from the Meridian, or South-Weft, and North-Eaft (k). On the Shore of Cbina, in the Harbour of Maccao, a Porturuefe Sailor thus ftated the Time of High-Water. The Elevation of the Pole, or the Latitude of the Place, is 22 degr. 20 min . In the Year 1584 on the nineteenth Day of September it was Full Moon, and the fame Day, it was High-Water half an Hour, or three quarters, paft Eight in the Morning; fo that the Moon was then three Hours and a quarter diftant from the Meridian; hence the Azimuth, or Point The was then in, may be found by a Problem in Chapter xxx:

I N the Year 1585 , February the third, which was alfo the third from the New Moon, it was obferved to be High-Tide a little after twelve; and therefore at the New Moon, which was February the firft, it was full Sea about forty Minutes after Ten.

HENCE the Azimuth the Moon was then in may be found.

(k) See the Note (m) belcw.

VOL. I.

I N the Year 1585 , February the fixteenth, it was obferved to be High-Water, at Full Moon, almoft at Noon, viz. at half an Hour paft Eleven.

IN the Year 1585, Fune the fecond, which was the fourth Day after the New Moon, it was High-Tide exactly at twelve, therefore at the Conjunction it was High-Tide at nine in the Forenoon.

THE fame Sailor adds, that the Time of High and Low-Water doth not agree with the Time that is computed from the Motion of the Moon, except for five Days before and after the New Moon. But there is fome Ambiguity in thefe Words, and others following, which we have therefore omitted. But the Caufe of this Variation is, that the Sea rifes nine Hours in the Port of Maccao, and ebbs only three, as is obferved in the next Propofition.

HERE follow fome Obfervations made by a Dutcb Sailor of the Time of High-Water, on the Days of the New and Full Moon, at different Places.

AT twelve 0^{3} Clock (on the New and Full Moon Days) it is High-Water along the Shore of Flanders, at Enckbuyjen in Holland, at Hoorn, at Emden in Eaft Friefand, at the Mouth of the River Elbe, at the Mouth of the Eyder, at the Inands of Futland, at Dover in England, \&c.

A T forty five Minutes paft twelve, at Flußbing in Zealand.

A T half an Hour paft one, at the weftern Shore of the Inle of Wight, at Calais, at the Mouth the River Tbames in England, along the Shores of Zealand, at the Mouth of the River Schelde, in the Meufe, at [Gorcum].

A T three o'Clock, at Amferdam, Rotterdam, Dort, and Nerwafle in England, before the Flemifh Sand-Banks, at Armentier in Flanders, at the

СнАР. 14. of Univerfal Geography.
Mouth of the River Garonne, along the South Shore of England, on the Coaft of France, Gafoigne, Bifcay, Gallicia, Portugal, and Spain; on the weftern Shore of Ireland, all the way to Sbetland.

A T a quarter before four in the Afternoon, at Roban in France, in the Maefe, at Rocbelle in France, in the River Garonne, in the Bays upon the Shore of Spain, Portugal, Gallicia, in the Bays on the Southern Shore of Bretagne in France, on the Shore of Gafoigne, on the weftern Shore of Ireland.

A T half an Hour paft four, from the $T_{\text {exel }}$ to the fouthern Shore of Ireland.

A T a quarter paft five, in all the Ports on the South of Ireland, at Plymoutb in England, and at other fouthern Places between that and Wales.

A T fix o'Clock in the Morning and Evening, at Hamburgb in the Elbe, at Bremen, on the Eaft fide of the Texel, at Antwerp, in the Englijh Chanel as far as the Scilly Inands.

A T a quarter before feven in the Evening, at Falmouth, and in Brifol Chanel, at St Nicolas and Podeffamke, as far as Weymouth and Hartpool.

A T half an Hour paft feven at the Road in the Texel, at Kilduyna, in the middle of the Chanel, befide Plymoutb, and as far as the Foreland of Lizard-Point.

A T a quarter paft eight in the Evening, about the Ifle of Wight, at the Weft fide of the Flie Inand.

A T nine o'Clock, at the Mouth of the River Eems in Friefland, on the Eaft fide of the Filie Inand, along the Shores of Friefland, and on the eaftern Shore of the Ifle of Wight.

A T half an Hour paft ten, at the Mouth of the River Tbames, on the Shore of Normandy and Picardy.

A T a quarter paft eleven, in the River Tbames, and other Places in England.

I T is very difficult to explain the Caufe of thefe wonderful, and extraordinary Differences of the Tides in all Places, tho' it properly belongs to Naturalifts, and Geographers, to do it. It is likely that the various windings of the Shores, and their different Situation to the Sea-ward, the Refiftance of the Inlands, the Concurrence of feveral Tides, the Diftance of Places from the Moonss Way, the various Winds, chiefly thofe that are general and conftant, the Declivity and Shoalnefs of the Shores, and other things, very much contribute to this furprifing Diverfity. For Example, at the Port of London the Tide rifes 'till the Moon comes to the South-Weft, when fhe hath South Latitude, and only then begins to ebb, not when fhe approaches the Meridian: for which we give this Reafon, viz. that while the Moon is moving from the Meridian of London towards Brafil (or from Brafil towards London) the Water ought not to fettle, but ftill to rife, becaufe the Shore of America repels the Water towards England, which is drawn thitherward by the Moon, fince there is no Paffage for it to proceed any further. But it may be afked why, when the Moon hath North Latitude, it fhould happen to be HighWater before the approaches the Meridian of London, viz. when the is in the South-Eaft Point? To which I anfwer, that when the Moon hath North Latitude fhe is much nearer England than when the hath South, and therefore raifes up the Water fooner; and the Reafon why the Flux is not continued fo long as 'till the Moon approaches the Meridian is, becaufe fhe impels the Ocean more towards the American Coaft, and Hudfon's Bay, where the greateft Floods are then obferved.

Снар. 14. of Univerfal Geography. $26 r$
A ND for this Reafon it is High-Water along the Coafts of Cbina, before the Appulfe of the Moon to the Meridian, becaufe the continual Eart Winds drive the Sea towards the Weft.

BUT all thefe Allegations are not fufficient to fatisfie me in thefe Matters, and therefore I would have the curious Naturalifts examine them with greater Scrutiny. For to find the true Caufe, it is requifite, that we be furnifhed with accurate Obfervations how the Tides ebb and flow in different Places, and what Azimuth the Moon is in when it is High-Water in thofe Places; and how her Bearing varies according to her Place at the Change and Full; efpecially in thofe Places where the Moon is vertical, and thofe that bear from them directly Eaft, Weft, North, and South (l). It is alfo to be diligently obferved, what height the Tides flow at thefe times; when the Moon is in the North Part of her Orbit, and moves not over fo much Sea, but over that vaft Tract of Land which lies between Cbina, and the weftern Shore of Africa. For fince fhe preffes not the Water directly when fhe moves over thefe Mediterranean
($)$ The following Directions are of excellent ufe for oblerving the Tides, given by Sir Robert Murray, in Pbilof. Tranf. No 17.

1. Obferve the Situation of the Place of Obfervation, viz what Currents, Seas, Inands, Bays, Shores, Shelves, E'c. are near it.
2.Obferve in what proportion the Increafes of the Tides from the Neap to the Spring Tides, and their Decreafes, and the Rifings and Fallings of the Ebbs, happen to be in regard of one another.
2. Obferve the Increafe and Decreafe of the Velocity of the Currents.
3. Meafure the Height of every utmoft High Water and Low Water, from one Spring Tide to another.
4. Meafure the exact Height of SpringTides and Spring Ebbs.
5. Obferve the Pofition and Strength of the Wind, the State of the Weather; the Height of the Barometer, \&c.
6. Calculate the Moon's Age and Place in all Refpects.

See Lowthörp's Abridgment. of Philor. Tranfact. p. 260. S 3

Places, tion of the Motion of the Water. Likewife thefe Phenomena are to be obferved when the Moon is in the South Part of her Orbit, and moves over Brafil, or South America. For without a perfect Notion of thefe Occurrences, we fhall fcarce be able to find out the true Reafon or Caufe of the Tide.

PROPOSITION XIX.

The Sea flows to moft Sbores in twelve Hours twelve Minutes, and ebbs back again in as many.

I N fome few Places it takes more Time in flowing than in ebbing; and on the contrary, in others it flows in lefs Time than it ebbs: yet fo that the Time of the Flux and Reflux (or the Time between the two full Seas) make together twelve Hours, $24^{\frac{3}{8}}$ Minutes, and two of thefe Times make twenty four Hours $48{ }_{+}^{3}$ Minutes, or almoft twenty five Hours. So that High-Water happens every Day later by almoft an Hour than the Day before, becaufe the Moon comes later to the Vertex, or Meridian of any Place, by almoft an Hour (fifty Minutes) every Day.

WE have fufficiently explained this Propofition in our Demonftration of the eleventh ; tho ${ }^{7}$ in that we accounted it to be full Sea, when the Moon is in the Meridian of any Place; but becaufe, as we fhewed in the laft Propofition, it is found to be High-Water in feveral Ylaces when the Moon is not in the Meridian, we do not, in this Propofition, reckon the forementioned Hours from the Time the Moon is in the Meridian of thefe Places, but from the Time fhe is found, by Experience, to be in that Vertex when it is high Water. Neverthelefs this Period

С н A P. 14. of Univerfal Geography.
of the Flux and Reflux is not performed exactly in twelve Hours, twenty four Minutes, (or in twenty four Hours, fifty Minutes) but fome Times fooner or later, becaufe the Moon conftantly changing her Diftance from the Zenith, returns at unequal Times to the fame Vertex; but this Difference is fmall.

THEREFORE tho' the Flux and Reflux together be performed, in all Places, in about twelve Hours, twenty four Minutes (when there are no Storms); yet in fome, the Time is equally divided between the Flood and Ebb; and in others, the Time of flowing is more or lefs than that of ebbing.

THE Garonne, a River in France, is feven Hours in rifing, and but five in falling. And in the Port of Maccao, upon the Shore of Cbina, the Tides flow nine Hours, and only ebb three, or lefs if the Eaft Winds blow.

ON the contrary, in the River Senegal, in N_{e-} groland, the Sea flows four Hours, and ebbs eight.

IT is hard to affign Reafons for this Difference. Some attribute it to the ftrong and fwift: Current of certain Rivers, or to their ordinary Flux. Thus the River Garonne refifts the Influx of the Sea with it's ftrong Current and hinders it ; but helps the Reflux, and haftens it. Others will have the Flux to be prolonged another Hour, becaufe the return of the Flood from the northern Seas, hinders it's Egrefs at the Mouth of the Garonne, and rather forces it further up the River. But it is my Opinion, that the River pours itfelf into the Sea, to a confiderable Diftance, with a rapid Motion, which is obftructed in part by the Tide, and made to ftand, fome Time before the Moon forces the Sea up into the very Chanel.

THE Reafon why the Sea flows only four Hours into the River Sencgal, is either becaufe really leffens all the eight Hours, or only fix, and is ftagnant the other two, by Reafon of the Equality of the Current and the Tide,

WE are alfo to confider that low Places have apparently a longer Flux, and a fhorter Ebb.

PROPOSITION XX.

Wbetber it be Flood in any Place at the Inflant the Noon is in the Horizon of that Place?

THEY commonly fay it is; tho' it be not true in thofe Places where it is full Sea when the Moon is in the Meridian. For when the Moon declines from the Equator fouthward, fhe approaches the Meridian in lefs than fix Hours, and therefore the Flux muft have begun when the Moon was depreffed below the Horizon: on the contrary, when the Moon has a North Declination, fhe requires more than fix Hours to move from the Horizon to the Meridian, and therefore it is Flood when fhe is elevated above the Horizon, or is in the Horary Circle of the fixth Hour; and fo it is obferved in moft Places, the' it be otherwife at London, as we obferved above. It feems indeed reafonable that, tho' the Moon has a North Declination, the Flux fhould begin when the is horizontal, becaufe fhe is then ninety Deyrees diftant from the Vertex of the Place, and therefore the Preffure of the Ocean ought firf to touch here. But Obfervations are wanting to confirm this.

PRO-

PROPOSITION XXI.

Having the Time of High or Low-Water given, on tbe Day of the Cbange or Full, in any Place wbere the Sea ebbs and flows regularly, (viz. in twelve Hours, forty eigbt Minutes) to find, at any Age of the Moon, the Time of High and Low-Water (m).

WE
(m) The true Time of the Tides, at all Ages of the Moon is not well computed by SeaMen and Altronomers; mont of them reckoning, that the Moon being upon a fet Point of the Compafs, or fo many Hours paft the Meridian, makes High-Tide in fuch and fuch a Point at all Times of the Moon. As for inftance, a South-weft Moon makes a full Tide at Londun, that is, when the Moon is three Hours paft the Meridian. Now this is true indeed at the New and Full Moon, but not at any other Times of the Moon, which few take any notice of.

But obferving more narrowly, I find that at London the Tides fall out at leaft two Points that is, an Hour and a half fooner in the quarters than in the New and Full Moon, and the true Time of the Tides is found to be fomewhat fhorter and fhorter from the New and Full Moon to the quarters, yet not in an equal manner, neither gradually decreafing from the New and Full Moon till the quarters; but rather that there was fome little Difference of Alteration both at the New and

Full Moons, and alfo at the quarters, and that the greateft Difference fell out in the midft between them, agreeing very well to a circular Proportion after this manner.

1. Divide a Circle into 12 equal Parts, or Hours, according to the Moon's Motion, or Diftance from the Sun, from the New Moon to the Full.
2. Let the Diameter of the Circle be divided into 90 Parts, or Minutes, that is, according to the Time of the Difference between the New or Full Moon? and the quarters, which is one Hour and a half.
3. Mike perpendicular Lines crofs the Diameter of the Circle from Hour to Hour.
4. Reckon the Time of the Moon's coming to the South in the Circumference of the Circle, and obferve the perpendicular Line that falls from that Point upon the Diameter; and the proportional Minute cut thereby, will hew how many Hours or Minutes are to be fubftracted from the Time of High Tides at the New and Full Moon, that fo you may have the true Time of the Tides that prefent Day. Example.

W E obferved before, that the Time of High and Low-Water (if we reckon by the mean Motion of the Moon from the Sun) is every Day $48 \frac{3}{4}$ Minutes, (or more accurately $48 \frac{13}{16}$) and every half Day $24^{\frac{3}{3}}$ Minutes later than the preceding.

IF therefore it be High-Water in any Place, on the Day of the New or Full Moon, at twelve 0^{\prime} Clock, it will be full Tide on the fubfequent Days of the Lunation, as in the following Table;

Moon's Age.	Hours.	Minutes.
1	XII.	48
2	1	37
3	2	27
4	3	16
5	4	5
6	4	55
7	5	44
9	7	34 23
10	8	12
11	9	1
12	9	51
13	10	40
14.	11	29
$14^{\frac{1}{2}}$	12	Midnight.
15	12	Noon.

Example. At London, on the Day of New and Full Moon, it is high Tide at three of the Clock, that is when the Moon is three Hours patt the Meridian, and fo by the common Rule the Moon being about four Days old it will be South about three of the Clock, and it will be pigh Tide three Haurs after-
wards, that is at fix of the Clock. But now by this Rule, if you count this Time of the Moon's coming to the South in the Circumference, the perpendicular Line which comes from three to nine, cuts the Diameter at 45 Min. which fhews that fo much is to be abated from the Time of High Tide in the New and Full

CHAP. I4. of Univerfal Geography. 267 THAT is, at the end of the firt Day of the Moon's Age it is High-Water later by forty eight Minutes, 区゚C.

BUT

Full Moon ; fo that it is High Tide 45 Min . before fix ; that is, at five Hours 15 Min. and not at fix, according to the common Rule.

The like you may do for any other Port, or Place, knowing the Time of High Water at the New and Full Moon in that Place: And you may do it the more readily, if you fet down the Time of High Water at the New and Full Moon under the Diameter, as I have done for London where it is high Tide at
three of the Clock: So when the Moon is fouth at three of the Clock or nine, the Perpendicular cuts the Diameter at two Hours 15 Min . which, added to the aforefaid three or nine, gives the Time of high Water as above.

Thus you may eafily make ? Table which by the Southing of the Moon fhall readily tell you the Time of High Tide in any Place. The following is for London.

Moon Tide Soutb. Lond	$\begin{array}{\|l\|l} \hline \text { Moon } & \text { Tide } \\ \text { Soutb. } & \text { Lond. } \end{array}$	$\left\|\begin{array}{c\|c} \text { Moon } & \text { Tide } \\ \text { Soutb } & \text { Lond. } \end{array}\right\|$	
H, M. H. M.	H. M H. M	H M. H. M.	HM H. M.
XH O	\| 5	$\begin{array}{\|ccc\|}\text { V1 } & 0 & 7 \\ & 10 & 30 \\ & 20 & 40\end{array}$	1x 91115
103	O 21	0740	cill 29
318	5 27	$7 \quad 52$	Cit 43
$3{ }^{3} 27$	5 33	88	CII 57
40336	5	408	0
$503 \quad 40$	50546	5088	501224
10354	\% 5^{2}		
1042	C $5 \quad 59$	10848	Ic 1250
204	56	09 c	2 c
416	$6{ }^{6} 13$	O9	$3 \mathrm{C}: 16$
40423	4.6	40926	4 C 129
504	5068	50939	501×42
$\begin{array}{lllll}11 & 0 & 4 & 37\end{array}$	6	V111c 953	O 154
10444	C 544	10106	1023
$20+50$	0653	201020	20216
30457	178	301033	30227
5	0771	O 10.47	40238
50 ;	7	II 1	50249

BUT for Practice, it is fufficient to add to the Time of High-Water at the New Moon.

BUT this Calculation fuppofes the Motion of the Moon, from the Sun, to be equal, tho' it be not; for when the is in her Perigee the moves much fwifter than when the is in her Apogee; and therefore in the former Cafe the prolongs the Time of the Tides, and in the later fhortens them. Befides, fome of the Lunar Months exceed thirty Days, and others are lefs than twenty nine, but the mean is twenty nine Days, twelve Hours, forty four Minutes.

BUT in thofe Places where it is High or LowWater when the Moon approaches fome certain

If you find the Difference not is Pbilof. Tranf. $\mathrm{N}^{\circ} 34$ - robich fo much between the Neap tbo it be found Fault woitb by Tides, and the Spring Tides, MrFlamftead (inthe fame Tranf. the Diameter mult be divided No 143) yet by many it is faid to into fewer Parts. This is Mr Henry Philips's way, delivered

Chap. 14. of Univerfal Geograpby. 269 Azimuth, tho' the Times may be computed by this Method, yet they are not fo accurately found.

NEITHER do the Conjunctions of the Sun and Moon happen at the fame Time every Change.

W E fhall fhew in Chapter xxx. how this may be done by the terreftrial Globe.

W E may ufe a Method fomething like this, for thofe Places where the Time of the Flux is more or lefs than the Time of the Reflux; fuppofing the Difference be conftant. But the Confideration of the Thing itfelf, and Experience, will fooner teach thefe Particulars than Difcourfe.

PROPOSITION XXII.

The Winds very often binder, or promote, the Courre of the Tides in all Places; and not only the Winds that blow in thofe Places, but even tboje in otbers may bave the fame Effect.

THE Truth of this Propofition is fo clear, that it needs no Demonitration.

PROPOSITION XXIII.

When any Part of the Ocean batb a proper, or particular, Motion, it is called a Current. Currents are various and direEted towards different Parts of the Ocean, of wobicb fome are conftant and otbers periodical. To enumerate the moft famous confant ones.

1. THE moft extraordinary Current of the Sea is that by which Part of the Atlantic or African Ocean moves about Guinea from Cape Verd towards the Curvature or Bay of Africa, which they call Fernando Poo, viz. from Weft to Eaft, which is contrary to the general Motion. And

And fuch is the Force of this Current, that when Ships approach too near the Shore it carries them violently toward that Bay, aad deceives the Mariners in their Reckoning. Hence it comes to pafs, that Ships which fail in two Days Time trom the Shore of Mouree to Rio de Benin, [or Formofa] which is one hundred Dutcb Miles, require fometimes fix or feven Weeks to return from Benin to Mouree, unlefs they run out into the main Ocean, which is not eafily done, becaufe the Current fets to the North-Eaft, and runs fwiftly from the Illand of St Tbomas, towards the Bay of Fernando Poo, carrying in with it the Ships tho' they have a fair North-Eaft Wind; and they can fcarcely get from the Shore, unlefs they be driven by thefe fudden Storms which break from the Clouds (called Travados) which feldom happen, and in fome Months not at all. This Current deftroyed feveral Ships before Mariners were well aware of it; as being either unadvifedly driven upon the Rocks and Shoals, and perifhed by Shipwreck, or detained in the Bay 'till they died with Hunger.

BUT this Current affects not the whole Etbiopic Ocean, only that Part which is adjacent to the Shore of Guinea, to the end of the Bay, and to about one Degree of South Latitude. It is obferved not to exceed the Diftance of fourteen Miles from the Shore; therefore Ships are very careful left they fhould approach fo near, when they fail along thefe Coafts; which would hinder their intended Courfe, and drive them to a Place they would not care to vifit.

IT is no eafy thing to find out the Caufe of this Current fo near the Shore, when the main Ocean thereabouts moves the contrary Way from Eaft to Weft. Two Things may be faid for it:

1. THE

Chap. 14. of Univerfal Geography. 271

1. THE Ocean being repulfed by the American Shore moves flowly to the Eatward, but this Motion is not felt in the Main, becaufe the other deftroys it, and renders it lefs fenfible, only near the Shore it runs fwiffly towards Fernando Poo, which, being ftretched a pretty way into the Land is fitteft to receive it ; and the Reafon why it is not felt in other Places upon the Shore of A frica (as at Congo) is, becaufe the Rapidity of the Rivers breaks and obftructs it.
2. THERE may be fome fubterraneous Re ceptacle in the Bay of Fernando Poo, into which the Sea perhaps may fall and draw the reft of the Ocean. But this may feem lefs probable; they that have opportunity of obferving it better may give better Reafons.

PROPOSITION XXIV.

[To point out the Place of the fecond perpetual Current].
THE Ocean moves fwiftly from about Sumatra into the Bay of Bengal, from South to North; fo that it is probable this Bay was made by the Rapidity of the Current; by which alfo perhaps the Peninfula of Malacca was feparated from India. I do not know whether the Caufe may be owing to the many Inands, and to Cape Mabo, upon the South Continent, whereby the Ocean in it's Paffage weftward may be diverted northwards: or thete may be a fubterraneous Receptacle in the Bay itfelf.

BE it how it will, I fuppofe the Current doth not fet directly to the North, but rather to the North-Weft. This fame Current is felt between Java and the South Continent, and therefore when the Dutch fail to the Indies, they firf make towards
PROPOSITION XXV.
[To point out the Place of the third perpetual Current].
BETWEEN Madagafcar and the Cape of Good-Hope, and more efpecially between Terra de Natal and the Cape, there is a ftrong Current which fets from North-Eaft to South-Weft (the fame way as the Shore runs) and is carried with fuch a rapid and extraordinary Motion, that Ships, with a brifk Wind, can hardly weather it, or fail againft it, to Madagafcar; on the contrary, they that fail out of the Chanel, between Madagafcar and Africa, towards the Cape of Good-Hope, are carried thither without the Help of the Winds, purely by the Force of the Current. I fuppofe this to be the Caufe, that the Indian Ocean, being forced towards the African Shore, and thereby diverted from it's direct Courfe, naturally flows towards the Cape of Good-Hope; where it finds a Paffage. For in the main Ocean, remote from the Shores, this Motion is not oblique but dired, from Eaft to Weft.

PROPOSITION XXVI.

[To point out the Place of tbe fourtb perpetual Current].

I N the Pacific Ocean, along the Shores of Peru, and the reft of America, the Sea flows from South to North; which, no doubt, is owing to the conftant South Winds which blow upon thefe Coafts ; for neither thefe Winds, nor the Currents are obferved out at Sea.

PROPOSITION XXVII.

[To obferve the Place of the fifth perpetual Current].
THIS is obferved to flow from Cape St Augufin, in Brajll, along the Coaft of America, among the Antilles in the Bay of Mexico, towards Florida, which is from South to North. For the Sea being driven by it's general Motion againft the Shore of Brafil, is there repulfed, and carried northward, where the Chanel is broader and more open, which very likely caufes this Current. The like Motion northwards is found at the Mouth of the Streights of Manilba, one of the Pbilippines. Likewife in Fapan there is a very fwift Current from the Port of Xibuxia towards Arimia.

PROPOSITIION XXVIII.

[To Jbew the Place of the fixth perpetual Current].
THIS is in the Streights of La Maire, where the Sailors in the Naffau Ship obferved the Current to fet to the Eaft; but this we cannot give fo much Credit to, fince La Maire himfelf writes to the contrary.

THERE are other Currents near the Shores of feveral Countries, but not yet accurately enough obferved or defcribed.
VOL.I. T $\quad P R O$.

PROPOSITION XXIX.

To thefe perpetual Currents may be referred fuch as are made by large Rivers, where they exonerate themfelves into the Sea.

A T the Shore of Loango, ten or twelve Dutcb Miles from Congo in Africa, there is a ftrong Current from the Land towards the Weft; becaufe of the many valt Rivers, (of which the Zaire is the greateft) which fall headlong into the Sea, and repel the Water ; being helped by the general Motion. Therefore it requires fome Days before Ships can come up to thefe Shores, tho' but a Dutch Mile or two from them.

S O at the Inand of Lamton, upon the Coaft of Cbina, the Sea moves from the Shore to the eaftward, contrary to the general Motion, which is from the Eaft to Cbina. This Current is caufed by the ftrong Efflux of the great River Tboncoan [or \mathcal{T}_{a}] and is not obferved out at Sea any further than the Ba/bee Inands.

THUS far concerning the conftant Currents; we fhall add fomewhat about thofe that are ftated or anniverfary.
PROPOSITION XXX.

There is a great variety of Bifting Currents whicb do not laft, but return at certain Periods; and thefe do moft of them depend upon, and follow, the anniverfary Winds, or Monfoons, wbich by blewing in one Place may caufe a Current in anotber.

A T $\mathfrak{F a v a}$, in the Streights of Sunda, when the Monfoons blow from the Weft, viz. in the Month

Chap. 14. of Univerfal Geography. of May, the Currents fet to the eaftward, cqntrary to the general Motion (n).

ALSO between the Ifland of Celebes and Madura, when the weftern Monfoons fet, viz. in D_{i-} cember, Fanuary, and February (or when the Winds blow from the North-Weft or between the North and Weft), the Currents fet to the South-Eaft, or between the South and Eaft.

A T Ceylon from the middle of March to OEtober the Currents fet to the fouthward, and in the other Part of the Year to the northward; becaufe at this Time the fouthern Monfoons fet, and at the other the northern.

BETWEEN Cocbin-Cbina and Malacca when the weftern Monfoons blow, viz. from April to Auguft, the Currents fet eaftward, againft the general Motion: but the reft of the Year fet weftward; the Monfoon confpiring with the general Motion. They run fo ftrongly in thefe Seas, that unexperienced Sailors here fuppofe the Waves to beat againft fome Rocks.

S O for fome Months after the fifteenth of F_{e} bruary, the Currents fet from the Maldivies towards India, on the Eaft, againft the general Motion of the Sea.

O N the Shore of Cbina and Cambodia, in the Months of OEIober, November, and December, the Currents fet to the North-Weft, and from January to the South-Weft, when they run with fuch a fwift Motion about the Shoals of Parcel, that it feems fwifter than that of an Arrow.
(n) Thefe Currents conftantly follow the Winds and fet to the fame point the Monfoon or Trade Wind does, out at Sea. See an accurate Hiftory of thefe in Note (a) upon Prop. II. of

Cbap. xxi. below ; from whence may be formed a better Judgment of the Time of the fe:ting of thefe Currents than from what our Author delivers in this Propofition,

A T Pulo Condore upon the Coaft of [Cambodia] tho' the Monfoons are fhifting, yet the Currents fet ftrongly towards the Eaft, even when they blow to a contrary Point.

A L O N G the Coafts of the Bay of Bengal, as far as the Cape [Romania] at the extream Point of Malacca, the Current runs fouthward in November and December.

WHEN the Monfoons blow from Cbina to Malacca, the Sea runs fwiftly from Pulo Cambi to Pulo Condore, on the Coaft of Cambodia.

THERE are feveral other Examples to be found in Sailors Journals; tho' lefs accurately given.

IN the Bay of Sans Bras, not far from the Cape of Good-Hope, there is a Current particularly remarkable, by which the Sea always runs from Eaft to Weft to the Landward; and the more vehemently the more the Winds oppofe it from the oppofite Point. The Caufe is no doubt owing to fome adjacent Shore which is higher than this.

PROPOSITION XXXI.

The Gyrations of the Sea, which we call Vortexes, or Wbirlpools, are of tbree Kinds.

SOME Whirlpools only turn the Water in a Round; others at Times abiorb, and emit or vomit it up; and fome again fuck it in, but do not caft it out. And doubtlefs there is a fourth Kind fomewhere in the Chanel of the Sea, which may throw out Water but takes none in. I do not remember any fuch to be recorded by Authors; only upon the dry Land there are feveral obferved. The Dutcb Mariners call thefe Whirlpools Maelfroom.

THERE

THERE are but very few of thefe, at leaft, that have been taken Notice of.

BETWEEN Negropont and Greece there is a famous Whirlpool; called the Euripus, much talked of becaufe of the fabulous Story of Arifotle's dying there (0). Scaliger endeavours to explain it thus. It is not much amifs (fays he) to luppofe the Water, received into the Caverss, in the Cliffs of the Rocks below, iffueth from thence; for by the continual running in of the Water the little rocky Bays are filled, and being full, they emit what they received, thro' winding and fubterraneous Paffages; whofe Capacity is fuch, that they pour out the Water for fo many Hours, whereby the Tides are now obftructed or repelled, and a little after forwarded or helped. But any one may perceive the infufficiency of this Caufe.

THE Maelftroom on the Coaft of Norway, is the fwifteft and largeft known Vortex ; for it is faid to be thirteen Dutch Miles in Circuit ; in the middle of which there is a Rock, which the People thereabouts call the Mouke. This Whirlpool, for fix Hours, fucks in whatever approaches it, or comes nigh it ; not only Water, but Whales, loaded Ships, and other Things; and in as many Hours difgorges them all again, with a hideous Noife,
(o) There are on each fide the Euripus fix or feven Gulphs, wherein the Water fhuts it felf up to iffue from thence as often as it enters there; and the Situation of thefe Gulphs perhaps contributes to this fudden Flux and Reflux, of which the Moon feems to be the principal Caufe.

There are twenty Daysof each Moon in which the Courfe of
the Euripus is regular, and ten in which it is irregular, siz. five Days before and after the New and Full Moon, in which there are nine or ten Changes of the Courfeof the Water every Day: and in each of thefe Changesthe Water flows about a Foot, and ebbs back again. The Phænomenon is very wonderful, and it's Caufe dubious. See Pbilof, Tranf. No 71. Pag. 215.

Violence, and whirling round of the Water. The Caufe is latent.

BETWEEN Normandy in France, and England, there is a Whirlpit, towards which Ships are drawn with an incredible Celerity; but when they come near the middle of the Swallow, they are, with the fame Force, thrown out again.

PROPOSITION XXXH.

The concufion or trembling of the Sea proceeds from a certain Spirit, wbich agitates not only the Earth, but alfo the very Water, and caufes it to bubble.

IN the Bay of Bifcay, not far from Bayonne, there is a Place, called by the Inhabitants Cap-Breton, where the Sea fometimes grows fo turgid, without the leaft Wind, that the adjoining Shore feems to be in danger of being overflowed; and on a fudden grows calm again. There is the like raging in a Lake in Scotland, called Loch Loumond, which is alfo caufed by a fubterraneous Spirit.

THE Portuguefe, about the Year 1523 , obferved a Percuffion of the. Water in the Sea of Cam, baya. In the greateft Calm, when there was not the leart Breath of Wind (as. Maffeus relates) the Waves on a fudden began to fwell up from the Bottom; and immediately the Ships feemed to nod as it were to one another; then their Joints cracked, and their Sides and Bottoms gave way. The Sailors, being ftruck with a fudden Fear, and thinking the Fleet had run upon Quickfands, were in the greateft Confufion: Some began to found with the Lead, others, to pump, but they that were more wary bethought themfelves of efcaping, and laid hold of Barrels to fwim upon: but it was afterwards found to be an Earthquake, which had put them into that Confternation at Sea.

Chap. 14. of Univerfal Geography.
PROPOSITION XXXIII.

Why the Pacific Sea is more fill and calm, and without bigh Waves; and woby it is eafily agitated by the Winds.

T H E Caufe, no doubt, is, that it's Motion to the Weft, is not obftructed by the Lee-Shores; as it is in the Atlantic.

T 4
CHAP.

C HAP. XV.

Of Lakes, Ponds, and Moraffes or Bogs.
PROPOSITION I.

Defnition.

ALAKE is a Collection of Waters contained in fome Cavity in an inland Place, of a large Extent, and every where furrounded with Land, having no Communication with the Ocean.

PONDS are little Lakes, which neither receive nor emit Rivers. Some Geographers, or learned Men, may perhaps define them otherwife, but it is no great Matter; we fhall not ftand to argue about Words : what we have done is to the beft of our Judgment.

A Morafs, or Bog, is an inland ftanding Water, having Earth raifed and appearing above it here and there, or even Earth, or Mud, mixed with it.

PROPOSITION II.

Lakes are of four Kinds.

1. SOME neither receive nor fend forth Ri vers; and if fuch are fmall, we call them Ponds; but if large, and of a vaft Extent, they acquire the but receive none. 3. Others receive Rivers, but have no Evacuation. 4. Others again, both receive and emit Rivers : of thefe fome emit more Water than they receive, fome lefs, and others an Equality. Again fome fend out their Rivers almoft in a ftreight Line with thofe they receive, others difcharge them other Ways, or towards other Points. Likewife fome receive more Rivers than they fend out, others not fo many, and fome an equal Number.

> PROPOSITION III.

To explain the Origin, and Continuance, of tbofe Lakes that neither receive nor emit Rivers.

SOME of thefe are large, others of a moderate bignefs, and fome but fmall. Of the two laft fome are always full of Water; others are dried up in Summer, and when it is conftantly fair Weather; both thefe Sorts are called Ponds. As to thofe that are dried up, it is eafy to fhew their Origin, viz. abundance of Rain, which gathers and ftagnates in fome Cavity, or depreffed Place. For if any Pit be fituated in the middle of a defcending Ground, the Rain-Water every way drains thither, and makes a Pond.

THERE are feveral fuch Ponds as thefe in India, made by the Induftry of the Natives, of which fome are a Mile, and fome two in Circuit; they are furrounded with a ftone-Wall, and are filled in the rainy Months, to fupply the Inhabitants, in the dry Seafons, who live a great Way from Springs or Rivers.

I N like manner Pools or Ponds are made by the Inundation of the Sea, or the Overflowing of the Rivers.

THUS

THUS the Nile and the Niger, the one watering Negroland, the other Egypt, when they overflow their Banks and are decreafed, they leave their Water in feveral Ponds; which the Inhabitants fence and fortify to preferve the Water 'till fuch times as they have occafion for it. By this means in Mufcovy, Finland, and Lapland, in the Spring, Summer, and Autumn, they have many little Lakes, which are generated partly by the Rains, and partly by the melting of the Ice and Snow.

B U T tho' fome of thefe Ponds may happen to be dried up in Summer, or when it hath not rained for a long Time; yet we are not thence to conclude, that they are wholly fupplied with Rain-Water; for they may be dried up, tho' there are Sources, or Springs, in the Bottom, which perhaps,are fo little that the Heat of the Sun, in Summer, diffipates the Water, and turns it into Vapour.

A S to thofe that admit no Rivers, and yet are not dried up, they may wholly proceed from Rain if their Chanels are deep and capacious, and in which fo much Rain-Water may be contained, that the Heat of the Sun cannot confume the whole before more Rain fall to replenifh them; tho' it is very likely, that many of thefe are fupplied by Sources under Ground, which continually emit as much Water as is exhaled; efpecially thofe Lakes that are found upon the Summits of Mountains, as upon BruElerus, Cenis, \&c. Some of them have perhaps been left, at firft, by an Inundation, and are continually fupplied and kept up by Rain-Water: And we need not doubt but that thofe Salt-Water Lakes, or Ponds, that are found near the Sea, were made at firft by the $\mathrm{In}=$ undation, or Immiffion, of the Sea-Water, fome way or other; as the Lake of Harlem; and others in Holland. There are alfo feveral falt Lakes in Peru.

THERE

Chap. 15. of Univerfal Geography. 283

THERE is but a fmall number of thefe Lakes to be found. Some little ones are obferved in Mufcovy and Finland, the Lake Locafda in [Epirus,] the Lake Bufaranda, in Amafia; one in Carniola, called the Zircbnitzer Sea; a round one in Cbina; another called Hila in Cocbin-Cbina; one in Zanbaga in Africa; two in Mexico, in America, the one of them feven Leagues long, and the other near as big. All thefe are but fmall ones, except that in Cbina, which is of a moderate Bignefs.

BUT the only one great Lake in the whole Earth of this fort is the Lake Parime in America, lying directly under the Equator. It is in length from Eaft to Weft, about three hundred and five German Miles, and, in the broadeft Place, one hundred Miles over, or thereabouts; fo that it may be compared with, if it do not exceed, any Lake in the World for magnitude ; yet it neither receives, nor emits any Rivers. It may reafonably be doubted how this Lake was produced, whether by fome former Inundation of the Ocean, or by fubterraneous Springs and Sources? And whether it is fed and kept up by Rain-Water, or the like? It feems probable that there are Springs in the Bottom which fupply it with as much Water as is daily evaporated by the Heat of the Sun. For Lakes feem to have the fame Origin as Rivers, only they differ in the Situation of their Springs, and the quantity of their fpringing Water. For if a Spring be furrounded with rifing Ground, and run into a deep and broad Chanel, and alfo fend forth but a fmall quantity of Water, it doth not run, but is evaporated as faft as it fprings. There is no Difference therefore, in the main, between Springs, Lakes, and Rivers, only in fome Circumftances; and there are found feveral Springs which do not emit Water; but fuch are more properly called Wells.

PRO-

PROPOSITION IV.

To explain the Origin and Supply of fucb Lakes as emit Rivers but receive none.

THERE is an infinite Number of thefe Lakes, and very many Rivers flow from fuch, as out of Cifterns; efpecially thofe that have their Rife in Muscouy, Finland, Lapland, \&cc. where their Springs being fituated low in the middle of a hollow Place, firft fill the Cavity and make it a Lake, which being not capacious enough to hold all the Water, it overflows the adjacent Places and forms a River. And we need not doubt but fuch Lakes have their Rife and Maintenance from Springs at the Bottom, whether they be real Fountains, or apparent ones, viz. Water brought thither by fubterraneous Paffages from fome other Places; which laft is more likely in fome Lakes that immediately produce vaft Rivers.

O F fuch fmall Lakes as thefe there are, as I faid before, a great Number; as the Wolga at the Head of the River Wolga; the Lake Odium, at the Head of the Tanais; the Adac, from whence one of the Branches of the River Tigris flows; the Ozero [or Wbite Lake] in Musoovy, that gives Source to the River Sback $n a$, which is poured into the Wolga, and many more little ones; we fhall here only reckon fome of the larger fort that are more remarkable.

1. THE great Lake Cbaamay in the Latitude of thirty one Degrees North, not far from India, to the eaftward of the River Ganges. Out of this Lake flow four very large Rivers, which water and fertilize the Countries of Siam, Pegu, \&c. viz. the Menan, the AJa, the Caipoumo, and the Laquia.

Some

Chap. 15. of Univerfal Geography. 285 Some Maps exhibit a fmall River that runs into this Lake.
2. THE Lake [Singbay] upon the Eaft Border of Cbina, fends out a great River [fouthward,] which being joined to another enters Cbina.
3. T HE Lake Titicaca, in [Los Cbarcas] a Province in South America, is eighty Leagues in Circuit, and emits a large River, which is terminated in another fmall Lake, and is no more feen. There are feveral Towns and Villages difcovered about this Lake.
4. T HE Lake Nicaragua, in a Province of the fame Name, in America, is only four German Miles from the Pacific, or South Sea, and above one hundred from the Allantic, into which it is difcharged at broad Flood-Gates.
5. THE Lake Frontena, in Canada, out of which iffues the River of St Lawrence.
6. T HE Lake Annibi, in Afia, in the Latitude of Sixty one Degrees.

PROPOSITION V.

To explain the Rife and Maintenance of tbose Lakes which receive Rivers, but emit none.

IT is manifert that thefe Lakes were at firft formed, and are ftill fupplied and fed by the Rivers which they receive, or which difburden themfelves into them. For when Rivers in their Courfe meet with a broad Plat of low Ground, they are there collected, and form a Lake; which (if the Soil be light, and porous to tranfmit the Water to the adjacent Fields, or if there be a fubterraneous Receptacle, or, which is moft likely, if the Water work it's way under Ground) never overflows but lofes, infenfibly, one way or another, as much Water as it receives.

THERE

THERE are not many of thefe Lakes taken Notice of.

1. IN the foregoing Propofition we obferved that the Lake [Titicaca] difoharges a River into a fmaller called Paria, which therefore may be referred to this Clafs, viz, to fuch as receive Rivers but emit none.
2. THE Lake Afpbaltites, which is alfo called the Dead Sea, receives the River Fordan, but emits none. It's length, from North to South, is feventy German Miles, and it's breadth five, as fome make it.
3. THERE is one in the leffer Afia.
4. THERE is a fmall one in Macedonia, called Fanna, which receives two little Rivers.
5. THE Lake of Geneva.
6. ONE in Perfia near Calgiftan.
7. THE Lake Soran, in Mufcovy, receives two fmall Rivers.
8. THE River Gbir, in Africa, is reported, by Leo Africanus, to lofe itfelf in a Lake, and fome Maps fo reprefent it ; but others join it to Nubia.

PROPOSITION VI.

To explain the Origin of tbofe Lakes that both receive and emit Rivers.

T HE Y are of three kinds, as was faid béfore in Propofition 2. and either emit more Watet than they receive, or an equal quantity, or lefs. If they emit more, it is evident they have fome hidden Springs in the Bottom: If lefs, the Earth is either fpongy, or there are fubtefraneous Aqueducts, whereby the Water is conveyed under Ground: If an equal quantity, it is a Sign that there are neither Springs nor Swallows at the Bot-

Chap. I5. of Univerfal Geography. 287 tom. Their Origins therefore are partly explained in Propofition 4, that is, are owing to a low Ground where there happens to be Springs, and into which Plenty of Rain-W ater is drained.

SUCH as are generated by the Influx of one River, and afford a Paffage for it in at one Side, and out at another, are found in many Places. Thus the Niger makes three Lakes in it's Courfe, and runs upon the Side of another. The Nile makes feveral more Lakes than are fhewed in our common Maps. The River Duina at leaft runs thro' fix, or feven, Lakes. And there are fome Rivers in Mufcovy and Finland, that make, as may be feen in our large Maps, at leaft fixteen Lakes before they exonerate themfelves into the Sea. We fhall only here enumerate fuch as produce other Rivers than thofe they receive.
I. THE Zaire, a Lake, or Morafs, in the Foreland of Africa, lies between the fecond and ninth Degree of South Latitude, and therefore is about one hundred and five German Miles long. In the middle of it there is an Inand (befides feveral fmall ones) fo large and populous, that the Inhabitants can raife an Army of Thirty thoufand Men. This Ifland almoft divides the Lake into two Parts, which have each a peculiar Name; that to the fouthward is called Zambre. Out of this Lake flow three large Rivers, the Nile, [or rather the Zeebe] the Coanza, and the Zaire (a). There are fome fmall Rivers that run into it;
(a) ' Our Author, according 6 to the Opinion of the Geogra-
6 phers of his Time, maketh the

- Nile to flow out of this Lake;
- but here (and in other Places)
- we have taken the Liberty to alter the Text (tho' as little as pofible) that the Defription
- may be more agreeable to the - modernDifcoveries of the Por-
- tuguefe Tefuits. A more juft a and modern account of the - Rifeand Courfe of the Nile is - given in the Note (g) upon - Prop. 20. Cbap. xvi.

2. T HE Lake Zaflan, not far from Zaire, lies between the third and ninth Degree of South Latitude; and therefore is about ninety German Miles in length. It receives and emits fome fmall Rivers.
3. THE Lake Zacbaf, not far from Zaire, towards the Cape of Good-Hope, emits a River, which being joined to others, is called St E/prit, or Delagoa.
4. THE Lake Aquilunda receives a Branch of the Zaire, and pours many Rivers into the Kingdom of Congo.
5. THE Lake Onega, in Finland, lies between fixty two and fixty four Degrees of Latitude, and is about twenty five German Miles long, but fcarce half fo broad. It receives feveral confiderable Rivers from other fmall Lakes, and difcharges one, ca!led the Sueri, into the Lake Ladoga.
6. THE Lake Ladoga is about thirty German Miles long, and fifteen broad; it receives the River Sueri, out of the Lake Onega, and other leffer ones from other Places; alfo a confiderable one from the famous Lake Ilmen in Mufoovy. It difcharges one River into the Gulph of Finland.
7. [THE White Lake] or Ozero, receives fome fmall Rivers, and difcharges the River Sback $/ n a$ which falls into the Wolga.
8. T H E Lake or Morafs called [Enare T'refk] in Lapland, is about forty German Miles long, and fifteen broad. It receives the River Avila, and fends one called [Paefrcka] into the Sea of Lapland.
9. THE Lake.Ula in [Finland] is thirty German Miles long, and half as broad. It hath an Inand

Chap.15. of Univerfal Geography.
Inand in the middle like the Zaire, and receives a River which paffeth thro' feveral Lakes, and difcharges a large one into the Botbnic Bay. There are feveral other Lakes in Mufoovy, Finland, and Norway.
10. IN Cbina there are four remarkable Lakes that receive Rivers, and difcharge others, various Ways.
11. IN Brafl there is a great Lake, with many Inands in it, called Xarryes, which difcharges the Rio de la Plata, and the River Miary.

PROPOSITION VII.

Moft Lakes are filled with frefh Water, only a few bave Jalt or Sea-Water in tbem.

THOSE that are produced by Rain or Rivers, or fuch as are remote from the Sea, and are fed by their own proper Springs, for the moft part contain fweet Water: but fuch as were formed by the Inundation of the Sea, or are fupplied with Sea-Water, by fome fubterraneous Meatus, or have falt Springs at the Bottom, produce falt Water. Thus the Lake of Harlem, and others in Holland, are falt ; and tafte like Sea-Water. There is a falt Lake alfo in Madagafar, and another in Pert ; there is one in Cuba, about two Leagues in Circuit, fituated not far from the Sea, which tho' it receives fome frefh Water Rivers, and breeds Fihh and Tortoifes, yet is falt. The Lake Ajphaltites, tho' it fwallows the fweet Water of the River Fordan, yet is not fweet itfelf, but exhales fuch a poifonous and ftinking Vapour that the Fields thereabouts, for half a Mile round, are rendered barren.

> YOL. I.

U
PRO-

PROPOSITION VIII.

To determine wbetber the Cafpian Sea be a Lake or a Bay of the Ocean.

SOME will have it to be properly called a Sea; as a Sea, properly fpeaking, is an extended Part of the Ocean, or is joined to it by a continued Tract of Waters. But they will have it to be joined to the Ocean by fome fubterraneous Intercourfe. Some indeed of the Antients wrote, that it was joined by an open Streight, to the Indian Ocean ; others, to the northern Ocean; but both were deceived, as we are well affured by Experience. Whether there be fubterraneous Intercourfes we do not know ; only there feem to be fuch, becaufe fo many and fo large Rivers exonerate themfelves into it, and are conftantly pouring in their Waters, whereby, in procefs of Time, the Chanel would be filled and run over, unlefs there were fubterraneous Fiffures and Meatus's, thro' which it might evacuate it's fuperfluous Waters into the Ocean (b). But others think thefe Waters are diftributed among the adjacent Mountains, and fupply them with that vaft number of Springs which is obferved hereabouts. Scaliger and others were of Opinion, that this Cafpian Sea runs under Ground into the Euxine Sea, but he gives no Reafon for it; this may be faid, that the Euxine Sea is continually difgorging a large quantity of Water thro' the Boppborus, and fome think this is more Water than the Rivers pour into it; therefore it may perhaps receive it
(b) By what means the Cafpian Sea (and all others) lofe as much Water daily, as they receive from the many Rivers
flowing into it; is difcuffed in the Note (k) upon Prop. xiv. Cbap, xiii. zobicb foe.

CHAP. 15. of Univerfal Geography. Communication any way with the Ocean, and therefore ought rather to be called a Lake, than a Sea. How it came at firft is another Queftion. Some avouch that there are found feveral Mountains of Salt in the Bottom, whereby it hath acquired fuch a Degree of Saltnefs; and that it is replenithed by the many Rivers that exonerate themfelves into it. But it feems more feafible, (tho ${ }^{\circ}$ thefe Rivers may contribute to it's Repletion) that this Sea hath, a great many Ages ago, been joined to the Ocean, and that it's Streights, by fome means or other, were filled up and ftopped, perhaps by interjacent Iflands which gained upon the Shores, in a manner which we fhall explain hereafter. And very likely, by the fame Caufe, the Euxine Sea may, fome time or other, become a Lake; the Bopphorus being filled up or obftructed.
PROPOSITION IX.

To make a Lake in any Place, if it be poffible.
THIS may be done if there be a River near, or a Spring upon the Place, and if the Place itfelf be depreffed; tho' fmall Lakes may be made upon the very tops of the Mountains. Firft the Place is to be hallowed, and dug to fuch a Depth and Extent as we defire, and the Sides are to be fortify'd with Wood-Work, if we fee occafion. Then a Chanel is to be made, by which the River is to be let in; but if there be a Spring upon the fpot, there is no occalion for fuch a Chanel.
PROPOSITION X.

To drain a Lake.
'THIS may be done two Ways; 1. If the bottom of the Lake be a little higher, or almoft of the fame Altitude with the adjacent Places, dig a Chanel, and let out the Water ; and by throwing in Heaps of Earth, together with the Heat of the Sun, it will in a fhort time be left dry.
2. IF the bottom of the Lake be lower than the adjacent Ground, it is to be firf furrounded with a Ditch, leaving here and there fome Canals, or Apertures, in it; to thefe apply Water-Engines and work out the Water; then cover the Ground with Dung, and fow in it fuch Seeds as are of a quick Growth, viz. Muftard-feed, Coleworts, and the like. The Dutch are very expert at draining Lakes by this Method; and often convert them into fruitful Meadow-Ground. At this time they are confulting how to drain the Lake of Harlem, and I do not doubt but it will be, fome time or other, attempted; becaufe this Lake covers much Ground which by draining would be of great Ufe to the Inhabitants.

> PROPOSITION XI.

Morafles, or Leacbes, are of two forts; fome are onzy and confift of Earth and Water mixed togetber, so as not to bear the Footfeps of Men: otbers are Ponds, or fcanty Collections of Water, inter $\int p e r s ' d$ bere and there with fmall Spots of Land.

THOSE of the former kind neither receive nor emit Rivers, we call them Slougbs or Bogs; there are many in Holland. In Brabant there is a

Сhap. 15. of Univerfal Geography.
large one called Peel-marfh. There are alfo feveral in Weftpbalia of both Sorts. Thofe of the later kind are chiefly found at the Heads of Rivers, whence fome call thefe Heads Morafes; as the Moraffes of Tanais in Muscovy, and of the Nile. There are feveral of thefe in the Province of Savolax in Finland, which cover vaft Tracts of Ground; alfo thofe [called Enare-Trefk] in Lapland; the Marfhes of Cbelours in Africa, the Moraffes thro' which the Eupbrates runs in Cbaldea, \&c. fuch as thefe are alfo found in Woods and heathy Defarts, and are made by the Rain-water gathered into hollow Places, whereby the Earth is foaked and moiftened, and the Rays of the Sun are hindered from drying it up, by the Leaves of the Trees and the Heath. Thefe are found chiefly in Germany and $M u \int c o v y$.

THE narrower fmall Lakes, like the larger Sort, do fome of them both receive and emit Rivers; fome only receive, others only emit, and the reft neither receive nor emit any.

THE firft fort are formed and fed, partly by Springs under Ground, and partly by Rain-water which ftagnates for want of a Chanel to carry it off. Of this fort there are many in Mufcovy and Finland. The fecond fort are generated from fmall Springs, and are fed by them and Rain-water.

ARISTOTLE calls the Sea of Mrootis a Lake, which is truly fo.

PROPOSITION XII.

Bogs contain a fulpbureous, bituminous, and fat, Eartb.
THIS is apparent from the black Colour of the Turf that is got out of them, which eafily takes fire, (as in Holland and other Places) by reafon this fort of Matter is contained both in the Rain com find any Lakes; and therefore moft part of them contain a foft fpongy and fulphureous fort of Earth.

PROPOSITION XIII.

> To drain, or dry up, a Bog.

THO' fome Bogs are of a great Depth, yet no more is required than to drain them to a certain level, which may be done feveral ways; 1. By making a Chanel to carry off the Water. 2. By throwing in plenty of dry Earth, when they are almoft dried up by the Heat of the Sun. 3. By fetting their Surfaces on Fire. 4. By turning the Water that feeds them, another way.

C HAP.

> C H A P. XVI.
> Of RIVERS in general.
> PROPOSITIONI.

This Propofition contains fome neceffary Definitions.

1. $\mathcal{A I V E R}$ is a Flux of Water continued thro' a long narrow Chanel, from one part of the Earth to another. The Cbanel is a Cavity, or hollow Place, made lower than the Banks, for the Water to run in.
2. A Brook is a little River, which is neither broad nor deep enough to carry a fmall Ship of Burden. A Navigable River is capable of carrying all forts of Ships, great and fmall; but thefe and the other fort are generally called great and fmall Rivers, according as they are in bignefs. A Torrent is a violent Flux of Water from the top of a Mountain.
3. A Confluence, Concurrence, or Conflux, is a Place where two Rivers meet.
4. BRANCHES of Rivers are the Brooks that run into them, and mix with them; or when a River is divided and runs in two Chanels, they are called it's Arms or Branches. Where the River is thus divided, it is called the Place of Parting or Divarication.
5. A Spring is the Place where running Water fprings out of the Ground. A Well is where the Water rifes and runs not forward, but is kept upon the fpot.

PROPOSITION.II.

Torrents and Brooks are Sometimes generated from Plenty of Rain and melted Snow.

IN the elevated or mountainous Parts of the Earth, there are found many Recêptacles, fmall Lakes, and Ponds. And when the Rain is poured into thefe, or the melted Snow, in fuch Quantity, that they are not large enough to contain it, they overflow and difcharge the fuperfluous Water into the under-land Places. This being done every Year, the Water in time makes itfelf a Chanel (tho' it fometimes flows without any certain Chanel). Thus a great many Torrents; and Brooks, being fed only by Rain, or Snow melted from off t ie Mountains, before they have run their Courfe, become moderate Rivers; efpecially if they proceed from a long Range of Mountains; as thofe in the Foreland of Africa, Indic, Peru, Sumatra, \&c, And what is remarkable, fuch Torrents flow in the Day-time only.

PROPOSITION III,

Most Rivers bave their Rije from Springs.

THE great as well as the middle fized Rivers, proceed either from a Confluence or Collection of Brooks and Rivulets, or flow from Lakes and Mo= raffes, But no River of confiderable Magnitude (fuch as the Elbe, the, Rbine, \&c.) flows from one Spring or one Lake, but is augmented by the ac- Lakes. The Wolga or Rba receives above two hundred Rivers and Brooks, before it exonerates itfelf into the Cafpian Sea; and the Danube receives no lefs, before it enters the Euxine Sea.

A N D tho' Pliny and Cardan tell us, that no Rivers flow into the Nile, yet Experience fhews the contrary ; as they that have travelled into $A b y f$ finia affure us.

T H IS Propofition may be proved by innumerable Examples.

T HE Springs of Rivers are fome of them found on the tops of Mountains, and fome on the Planes; and thofe Rivers that proceed from Lakes, have their Fountains (as was faid in the laft Chapter) at the bottom, or in the Chanel, of thofe Lakes that produce them, which like Cifterns contain the effufion of Water, 'till in a greater Quantity it be poured into it's proper Chanel. Hence fome Fountains are covered with Earth or Water, and others are open.

THE Springs of the Rivulets which begin the Tanais and the Elbe, are on Planes, to which others are afterwards joined. We might here add feveral Examples, but thefe are fufficient.
$C A R D A N$ is of Opinion, that thefe Fountains do not flow immediately from the Plane itfelf, but are conveyed by fubterraneous Aqueducts from the adjacent Mountains; however, I believe they firft make a Lake or a Morafs; for the Tanais does not feem to flow immediately from a Spring, but from a Morafs or fhallow Lake.

THE Springs of moft Rivers are upon Mountains, as thofe of the Rbine, the Po, the Danube, the Niger, \&c.

SEVERAL flow from Lakes, as the Nile, the Wolga, and the great River of St Lawrence in Canada.

A great River may happen to flow from one Spring, if the Spring itfelf be fituated high (as moft are) and a great part of the Chanel low, or but a little higher than it's mouth; fo that the Water flowing with a fwift Courfe at firft, and by degrees flower, is increafed in the Chanel and becomes a large River, becaufe it difcharges not fo much Water at it's mouth, as it received from it's Spring when it firft began to flow.

PROPOSITION IV.

Rivers are mucb aug mented by frequent Rains or melted Snow, and at particular Times of the Year.

I N the Country of Peru and Cbili there are fome Rivers fo fmall, that they do not flow in the Nighttime, but only in the Day; becaufe they are fed by the Snow upon the Mountains of the Andes, which is then melted by the Heat of the Sun. There are alfo feveral Rivers upon both fides of the extream Parts of Africa, as in Congo, Angola, $\mathcal{E}^{2} c$. which are greater by Day than by Night. The like are found both in Malabar and Cormandel in India. The Rivers alfo in thefe Places are almoft dried up in Summer, but fwell and overflow their Banks in Winter, or the wet Seafons. Thus the Wolga in May and Fune is filled with Water, and overflows it's Shelves and Inlands; which at any other time of the Year is fo fhallow, that it fcarcely affords a Paffage for loaded Ships. For the Snows being melted at this time of the Year, on the Mountains, from whence the Rivulets (being more than an hundred) flow into the Wolga, caufe this Inundation. The Nile, the Ganges, the Indus, \&c. are fo much fwelled with Rain, or melted Snow, that, in like manner, they overflow their Banks. But thefe Deluges happen at divers times of the Year,

Year, becaufe they proceed from various Caufes and different Places. Thofe that are fwelled with Rains, are higheft in Winter; becaufe thefe are then more frequent than at other times of the Year; but if they proceed from Snow, which in fome Places is melted in the Spring, in others in Summer, or between both; the Deluges of the Rivers happen accordingly, viz. in the Spring, Summer, E'c. or at the time when the Snow is melted upon the Banks of the Rivulets that form thefe Rivers. Moreover fome Rivers, efpecially the large ones, flow from Places at a great Diftance, where it is Summer at the fame time it is Winter in the Places where they pafs through; and for this Caufe they overflow their Banks at different times of the Year. But moft of them caufe an Inundation in the Spring, becaufe the Snow is then melted in moft Places. We fhall explain the Caufe of their different Properties in the particular Defcription of each River.

W E fhall alfo in the next Chapter treat of that remarkable Spring in Fapan, which only flows for two Hours every Day.

PROPOSITION V.

To explain the Origin of Springs (a).
THIS is eafier to conceive than when it is propofed thus; From whence are Rivers generated?

For
> (a) Since by Dr Halley's Calculation it appears, that the Vapours which are drawn up from the Sea exceed almoft three times the Quantity of Water difcharged into it by Rivers, [as was 乃beron in the Note (k) upon Prop. xiv. Cbap. xiii.] it will
be no hard matter, feeing there is fuch an overplus of Water, to find enough from thence to fupply Fountains, according to the Opinion of the fame learned Gentleman.

For thefe Vapours being carried every way by theWind, neceffarily

For when we fee fuch great Rivers as the Rbine, the Elbe, \&cc. we more admire whence they proceed. becaufe
ceffarily meet with the high Ridges of Mountains that are difperfed over various Tracts of the Earth: each of which far furpaffes the ufual Height to which the Aqueous Vapours of themfelves afcend, and on the Tops of which the Air is fo cold, and rarified, as to retain but a fmall part of thofe Vapours that fhall be brought thither by theWinds. TheV apoursmeeting with thefe Ridges of Mountains are there compelled by the Stream of the Air to mount up with it to their Tops, where meeting with more rarified Air, they naturally fall down in Drops, pervading the Crannies and Fiffures of the Earth, and gleeting into the Caverns of the Hills, the Water thereof gathers into the Bafons of Stone, or Clay, it finds, which being once filled, all the overplus of Water runs over, and, where it can find a Paffage, breaks out at the Sides of the Hills, and forms Fountains; many of thefe, running down the Vallies, or Guts, between the Ridges of the Hills, and coming to unite, from Rivulets or Brooks; many of thefe again being united into one common Chanel, form vaft large Rivers, as the Rbine, or the Danube.
This Theory of the Caufe of Springs the fame excellent Perfon proves by Experience. For he fays, that when he was in the Ifland of St Helena, taking Aftronomical Obfervations in the Night-Time, on the Top of
the Hills about 800 Yards above the Sea, he found fuch a Condenfation of the Vapours, that in 7 or 8 Min. Time, tho' there was a clear Sky, the Glaffes of the Telefcopes he ufed were covered with little Drops, and the Paper on which he wrote his Obfervationswouldimmediately be fo wet with the Dew that it would not bear Ink.

This Hypothefis he thinks; more reafonable than that of thofe who derive all Springs ${ }^{3}$ from the Rain-Waters, which yet are perpetual and without Diminution, even when no Rain falls for a long Space of Time: Or than that which de rives them from a Filtration or Percolation of the Sea Waters, thro' certain imaginary Tubes or Paffages within the Earth, wherein they lofe their Saltnefs. This Opinion labours under this principal Ablurdity, that the greateft Rivers have their molt copious Fountains fartheft from the Sea, and where fo great quantities of frefh Water cannot reafonably be derived any other way than in Vapour. See Pbilof. TranF. No 192. Pag. 468.

Notwithftanding it is very probable that all Fountains have not the fame Origin ; but that fome proceed from Rain penetrating the Fiffures of the Earth, and flowly gleeting thro' the Interftices to the Orifices of Springs; and others, efpecially thore that are falt, and placed near the Sea Shore, take their Rife from the we look upon fmall Brooks. But we have fhewed in the two laft Propofitions, that Rivers proceed partly from Rain and melted Snow, and partly from Lakes and Concurrences of Brooks and Rivulets; and therefore we do not enquire fo much here about the Sources of Rivers, as about the Origin and Permanency of Springs.

THE Opinions of Naturalifts and Geographers are various about this Matter.

1. SOM E think that all Rivers and Springs receive their Water from Rain, or melted Snow ; and this they bring for a Reafon, that Rain and melted Snow fometimes augment Rivers to fuch a degree, that they overflow their Banks, and lay whole Countries under Water: But in the Summer Seafon, when no Rain has fallen for a long Time,

Sea Water percolating thro' the Sands; but the greatelt part of Fountains, efpecially fuch as break from the fides of high Hills, derive their Waters from Vapours, as was faid above.
The learned DrWoodzoard, in his Natural Hiftory of tbe Earth, explainsthe Origin of Fountains otherwife. He imagines, that there is a great Abyfs, or Promptuary, of Waters, inclofed in the Bowels of the Earth, which, communicating with that of the Ocean, is continually exhaled into Vapours, by the Force of a fubterraneous Heat which he proves by many Arguments to be in the interior Parts of the Earth ; and that as thefe make their way upwards, they pervade the Fiffures, and Intervals of the Strata of the Earth, permeating alfo the very Interftices of theParticles of Sand, Earth and

Stone, 'till they come near the Superficies of the Earth, where they are condenfed with cold, and come together by Drops, which, being collected, break out at fome Aperture or other, and form Fountains. But when the Heat above the Superficies of the Earth, is as intenfe as that in the interior Parts thereof, it takes the rifing Vapour, where it penetrates the Superficies of the Earth, and bears it up into the Air, or at leaft diminimes greatly.

They who would fee this Hy pothefis moreaccurately explained, let them confult the learned Authorin his Book: It isenough for us only to mention it, accounting Dr Halley's Theory much more clear, and built upon a better Foundation.

Jurin's Appendix.
the the great Rivers grow lefs, and the fmall ones are moftly dried up, becaufe the Chanels of the later are too fhallow to contain any large quantity of Water; but the former, whofe Chanels are deep, do not ceafe running, nor are dried up, becaufe they have collected fo much Water from the former Rain and melted Snow, that it cannot all be exhaled into Vapours, except it be by a lafting and conftant Heat. 2. Becaufe there are the feweft Rivers where it feldom raineth, as in the inland Parts of Africa there are but few Springs.

BUT thefe Allegations do not folve the Propofition, which doth not enquire about the Origin of Rivers, but from whence the Water of Springs proceeds; therefore they that take this to be a Solution do not underftand the Senfe of the Propofition, as we obferved before. And even the Property they propofe to prove it by is not univerfal; for there are Rivers found in Places where they have feldom any Rain and no Snow, tho ${ }^{*}$ what they fay is true concerning the Rivers in E gypt and Peru. Befide, Rain-Water doth not penetrate into the Ground beyond the depth of ten Foot; whereas feveral Fountains fpring from a greater Depth.
2. OTHERS think, that we are not to enquire about the Origin of the Water of Springs, fince it is an Element as well as the Earth, Air, and Fire, whofe Origins are not enquired into. This is Seneca's way of arguing. But thefe Authors cut the Gordian-knot when they cannot untie it; for we do not difpute about the Principles of Water, but enquire how it flows to the Heads of Rivers, rather than to any other Place. Moreover, the Earth is not a Fluid as Water is; and to fay, that the Air and Fire are not enquired into, is falfe.
3. THE Peripatetics follow the Opinion of their Mafter Ariftotle, delivered in Chapter xi. that the Water of Springs is generated from Air contained in the Bowels of the Earth. Thefe are his Reafons; 1. The Air, furrounding the Earth, is turned into Water, viz. into Rain ; and therefore fince there is alfo Air in the Bowels of the Earth, and the fame Caufe to condenfe it, viz. Cold, it is contrary to Reafon to think that Water is not produced from Air there. 2. Experience teaches us, that great Drops gather from fmall ones under Ground, and therefore the Heads of Rivers are only a great many Springs gathered into one Place. For this Reafon, they that make Aqueducts, ufe to draw the Water thro' narrow Trenches and Pipes, which diftils, as it were, from the moift Earth, Drop by Drop. 3. Becaufe moft Fountains, efpecially of great Rivers, are found on mountainous Places, and but few upon Planes, it is a Sign that their Water proceeds from condenfed Air or Vapours, which naturally tend towards high Places ; and Mountains are Sponges, as it were, lying upon the Planes. Thefe are Arifotle's Reafons, to which this following may be added of no lefs Force than the reft, viz. that when the Air is clouded and filled with Vapours, acid Fountains tafte fweeter, which is a Sign they are augmented by the Air.
4. $C A R D A N$ and others are of Opinion, that the Water of Fountains proceeds from little Drains or Guts collecting the condenfed watery Vapours both above and under Ground; but thefe feldom become Rivers, without being increafed with Rain and melted Snow. His Reafons are thefe; I. If you obferve the Mountains in the Morning you will find them full of Moitture. 2. Rivers in the Morning are found to fwell, and the more the nearer they are to their Springs,

BUT the perpetual bubbling and fpringing up of the Water from Fountains, without any intermiffion, does not feem to be produced by fo weak and inconftant a Caure. Neither is there much Difference between Arifotle's Opinion and this of Cardan; only Arifotle fays, Fountains proceed from Air condenfed, and Cardan, from Vapours; and there is but little Difference between Air and Vapours.
5. SOME of the Antients were of Opinion, that Rain-Water is hoarded up in the internal Caverns of the Earth, from whence it iffues, as out of a great Promptuary, and that all Rivers are fupplied from one common Fund, or fpring one from another ; alfo that no Water is difperfed over the Earth but fuch as is collected in the Winter Seafon, and referved in thefe Receptacles, to be poured in due Time into innumerable Rivers. For this Caufe, fay they, Rivers are greater in Winter than in Summer ; and fome are perennial, others not. Their Reafons are the fame with thofe given for the firft Hypothefis. But Ariftotle and his followers reject this Opinion, becaufe there is more Water poured out of the Mouth of one River in a Year, than the whole Bulk of the terraqueous Globe.
6. MA N Y of the modern Philofophers, with the Antients, fuppofe the Earth to fuck in as much Water as it exonerates into the Sea, thro' the Mouths of Rivers; and that the Sea-Water, by draining thro' the hidden Receffes of the Earth, and by being ftrained thro' the Mazes and Fiffures, and thro' the Interftices of the Sand and Gravel, lofeth it's Saltnefs, and becomes pure Water.

I am alfo of this Opinion, and think it moft reafonable, but do not exclude the Caufes repeated in the firt and third Place. The Reafons for it are:

1. BECAUSE

Chap. 16. of Univerfal Geography.

1. BECAUSE more than a thoufand Rivers exonerate themfelves into the Sea, and the larger fort produce fuch quantities of Water, that what each of them pours in a Year's Time into the Sea, exceeds the Bulk of the whole Earth; as what the Wolga pours into the Cafpian Sea, and others. So that it is impoffible but that the Water fhould be refunded out of the Sea into the Earth, and carried to the Heads of Rivers; elfe we could not conceive why the Sea is not increafed to an immenfe Bulk, or why Springs do not ceafe to emit Water. Neither can any one object that there is as much Water exhaled from the Sea in Vapours, as it receives from the Rivers; for Rain alone returns thefe Vapours, and if the Water of Rivers were continually turned into Vapours, it would produce more than thofe exhaled from the Sea.
2. THIS Opinion is alfo thus proved, becaufe that Springs near the Ocean are falt or brackifh, and the nearer they are the Sea, the more they are fated with Salt; as on the Shore of Africa, and in India, chiefly on the Shore of Cormandel, where no Vines grow, and all their Wells tafte falt. Near the Town of Suez, at the end of the Red Sea, their Springs are all falt and bitter ; and even the Water which is fetched two German Miles from the Shore, taftes a little brackifh. Alfo in feveral fmall Inlands there are no frefh Water Springs, but all falt (tho' fomething lefs fated than the Ocean) as in the Inland of St Vincent, and others. In the low Countries of Peru, that border upon the Ocean, their Lakes are falteft, becaufe of the Vicinity of the Sea. And in the maritime Parts of fome eaftern Countries their Coco-nuts are obferved to tafte brackih. Not to mention the Salt Springs that are found in indand Countries, as in Lorrain, Lunenburg, \&c.

VOL.I.

3. BECAUSE

3. BECAUSE it is certain, that the Sea fends it's Water thro' fubterraneous Conduits to the falt Springs of Lunenburg, Hall, \&xc. whofe Feeders are obferved to contain perfect Sea-Water under Ground.
4. BECAUSE if we dig to a great Depth, as is often done in Mines, we fhall find plenty of Water, which can neither proceed from Rain nor Air.

BUT by what means the Water is carried from the Sea to the Fountain-Heads, and how, in the Paffage, it becomes fweet, we have already explained; and fhewed that the Bottom of the Sea not being in every Place rocky, but here and there fandy, gravelly, and oozy, imbibes the SeaWater, and letteth it into the Earth (after the fame manner as when we throw Water upon Sand, Beans, Peas, Wheat, or other forts of Grain) thro' whofe Interftices it is brought by degrees to a great Diftance from the Sea, where at length the fmall Drops come together, efpecially in ftreight Places, as are Mountains, $\mathcal{E} c$. and having found an Aqueduct they difcharge themfelves at a Spring. But if the Cavity, where they are collected, be covered and bound up with the Earth, then the Water will take another Courfe, where it can with greateft Eafe infinuate itfelf, and fpring up at an Aperture in another Place; which is not the real Fountain, but a Conveyance of the fubterraneous River to a Place above Ground. And if the Water can find no Way out of the Receptacle, and hath not force enough to make itfelf one, it is not increafed, but the fubfequent Particles of Water are turned another Way. For it is the nature of all Liquids and Fluids, that their Parts or Particles flow towards that Place where the Flux is made. Thus if you fill a Veffel with Water 'till it rife above the Brim, tho' all the raifed Parts of the Water equally prefs the Brim, and have an equal Tendency and Power to run over at the next Side, yet if on one Side of the Veffel any part of the incumbent Water be made to flow, the reft will forfake their refpective Sides, and move (as if they were drawn) towards that Side where the Flux is begun (the Caufe of which it belongs to Pbyfics to explain) (b). Or if you put one end of a Piece of Bread into Water or Wine, you will fee the Water move upwards and diffufe itfelf thro' the Part above Water. Moreover the Sea cafily pervades the Fiffures of the Earth, and therefore with the fame eafe may glide out of them; except we had rather afcribe this to Evaporation, whereby the Particles are carried upwards, and condenfed into Drops, when they meet with narrow Places.

B U T becaufe there are fome Arguments, which may feem to render this Opinion lefs probable, we will difcufs them here, left they fhould feem like Blots upon our Hypothefis.
I. S P R I N G-Heads are more elevated than the Superficies of the Sea, and for the moft part are feated in mountainous Places; therefore it is contrary to the Nature of Water to move from the Sea up to thefe Places; for Water always runs downwards, as is manifeft from Rivers and Drains.
2. THO' the Bottom of the Sea be fandy, gravelly, and fpongy, fo that the Water may eafily pervade the Interftices; yet for what Reafon fhould it not rather moiften the fubjacent Parts of the Earth, than afcend upwards, and glide to the Ducts of Fountains, when the Earth near the Sur-
(b) We gather from Sir IJaac Neroton's Principles, that it is the Nature of Fluids (and of all the Matter in the Univerfe) mutually to attract themfelves, and
the Parts of one another; Thus Water attracteth Water, and the Particles that firt begin to flow, draw the next Particles to them, and thefe the hext, E $0^{\circ} \mathrm{c}$.
face is commonly rocky and floney, as in the Mountains of the Inand of St Helena?
3. WE have no Reafon affigned why the Water as it flows from the Sea to remote Fountains, does not break out in fome intermediate Place. And we are as much in the dark, why there is none or very little Water found in deep Mines, as we are told by Tburnbeuferus.
4. SPRING Water mult be falt, if it proceed from the Sea .

THESE are the chief Arguments which feem to invalidate our propofed Hypcthefis; for I palis by thofe of lefs moment alledged by others, as that the Sea cannot fupply fo many Rivers: and then again, that Rivers would never leffen, if they proceed from whence we fay they do. Thefe two are foon anfwered; for firtt, the Sea receives the Water it emits into Fountains, from the Rivers; and the other, as we obferved before, is not the Queftion, for we are not arguing, that all the Water of Rivers proceeds from the Sea, but only the Water of Fountains, which of themelves make Rivers, as we faid before ; where we alfo afferted, that Fountains are augmented by Rain and Dew, which fink down into the Earth and either foke and moiften it, or are drawn towards the Fountainheads by the Efllux of the Water, as we fhewed by other Examples. Let us therefore return to examine the other four Arguments which feem to be of fome Weight.

THE firft is thought to be the ftrongeft, as being taken from Experience, and therefore the Learned have contrived feveral Anfiwers to it. They come off eafieft who affert that the Ocean is higher than the Earth, and confequently higher than the Fountain-heads; wherefore fay they, Water, naturally flows to the Fountains, becaufe they ate of a lefs Altitude than the Ocean. Olea- rius alfo in his Defcription of his Travels into Perfia relates, that having afcended one of the Mountains which bordereth upon the Cafpian Sea, he tried the Altitude of it above the Superficies of that Sea with an Aftrolabe (or rather a Surveying Inftrument) and found none; but obferved, that the extream parts of the Sea feemed to be in the fame horizontal Line, or even a little elevated above it ; and therefore the bulging of the Sea made it as high, or even a little higher, than the top of the Moun* tain, vhere he took the Obfervation. But this Solution notwithftanding cannot be admitted, becaufe we proved in Chap. xiii. that the Superficies of the Ocean is not higher than the Land, or than Mountains, but rather lower, as appears alfo from frequent Obfervations made by expert Mathematicians. As to Olearius's Obfervation, it is not to be infifted upon here; for the Cafpian Sea is not higher than it's Shores, much lefs than the Mountains, as appears from the many Rivers that exonerate themielves into it. We muft therefore fuppofe, that Refraction obftructed Olearius's Obfervation, and made the Surface of the Sea appear higher than it really is; and perhaps the fluctuating of the Waves might increafe the Caufe, or the Mountain which he afcended was of no great Height.

T HE Weaknefs therefore of this Solution being expofed, others propofe this ; that the natural Place of the Waters is about the Earth, and therefore they ought to furround or cover it, becaufe they are lighter; and becaufe they are hindered from pof feffing their natural Place by the Mountains and Hills, and the Elevation of the inland Places, that part of the Ocean which fhould be where the Mountains and high Parts are, being thruft out of it's natural Place, violently preffes the Water underneath it, which tho' it be in it's natural Pofture; yet being fqueezed and preffed towards the bottom,
by the fuperincumbent Water, it is forced to give way, and finding no place to flow to, it retires towards the Sides, and pervades the Foundations of the Mountains; where being collected, as in a Ci ftern, it is ftill urged forwards towards the tops of the Mountains by the incumbent Water of the Ocean. As we may obferve in a Tankard that has a Pipe on the fide (reaching to the very bottom) made to pour Wine thro' into Glaffes ; if, I fay, we drop a Stone into fuch a Veffel, whether it be full or half full of Liquors it will fpout out at the Orifice of the Pipe. This is Scaliger's Subtility, but it is too grofs to pafs. For the Water is not thus forced towards the tops of the Mountains, fince Experience thews us the contrary in Mines; and if it were fo, the Water of all Springs would be falt; befides, it is falfe to fay that the Water is not in it's natural Place, and therefore prefes upon the Water underneath, for this is affumed without Proof, and is contrary to Experience. Water does not prefs upon the Parts below, unlefs it's Surface be of an unequal Altitude, but the Surface of the Ocean is fpherical and confequently at Reft. Moreover, if the Waters were moved by any Preffure, it would be towards the Shores, where the Paffage is more open than the fmall Fiffures of the Earth. And tho' there be great otulets at the bottom of the Sea, for the Water to flow through, yet fince it is falt, it cannot make frefh water Fountains. I think the true Anfwer to this Argument is not far to fetch, if, we comfider how Water is conveyed to Fountains, not byany Chanel or Pipefrom the bottom of the Sea, or the Root of the Mountain (by which mearis it would ftill keep it's Saltnefs), but by acontinual diftilling, gleeting, and ftraining of the watery Particles thro, the terreftrial Matter, till they find a Receptacle fit to colled and condenfe them into Drops, where being continually fucceeded by others, others, they have recourfe to fome Conveyance, and through it break forth at a Fountain. And we obferve this very thing in Mines dug to a vaft Depth, how that Water on every Side is continually dropping, and collecting itfelf into fmall Guts, which they call Veins of Water; and if feveral fuch Guts or Runnels as thefe concur in one Receptacle, they form a Fountain, as they who make Drains, to bring Water into Wells, very well know. For in moft Draw-Wells the Water is collected from the dropping of the Earth, round about into the bottom of the Well ; and they that make Aqueducts dig fmall Furrows in Gutters to colleat the Waters, and then convey it in a large one to the intended Place. If it be objected, that many Fountains are obferved to fpring up among Rocks, where it is likely the watery Particles can fcarce be admitted; I anfwer, That this confirms our Opinion; for thefe Rocks are not continued to the foot of the Mountain (upon which fuch Springs are found) but only cover the Surface to a fmall Depth, and the Earth is lighter and lefs rocky within, or at leaft fit to give Admiffion to the Water, which, when it comes to the Strata of the Stones, can penerate no farther, but is there impeded and collected into Dróps, and breaks out into a Fountain among the Rocks, if it can find any Aperture. Moreover, the rocky Mountains in the Inand of St Helena, and in mott other Inlands, are not within fo denfe and obdurate, as appears from the Cinders, Ahes, and fulphureous Earth; which fhews that thefe Mountains fome time or other burnt or fmoaked. And to this we may add, that the Fountain is not always in the Place where the Water breaks out, which is conveyed very often from a higher Place, by a Chanel under Ground, and this caufes it to break forth with greater Violence, as is very offen obferved.

$$
\text { X } 4
$$

We

We may be further convinced of the Truth of there Things, by confidering that Fire will tend downwards thro' a Continuation of Matter, tho' of it's own Nature, when it is free from Matter, it tends upwards, Thus if you put one End of a Bar of Iron into the Fire, it will penetrate thro the whole, and heat the other End, tho' it be turned downwards. And this is fufficient to convince any one of the Invalidity of the firf Argument.

TO the Second we anfwer, That the Reafon why the Sea-Water doth not penetrate and fink into the Earth towards the Center, fo much as into the Mountains, is, becaufe the Earth there is denfer, and full of Metals, as we find by Experience; but where it is not fo obdurate, the Wa ter glides in, and therefore if there are Receptacles under the bottom of the Sea, we do not deny but that there may be fome frefh and falt Water Lakes there. But becaufe there are few fuch Receptacles, and the Earth every where is denfe and metalline, under the bottom of the Sea, it cannot conftantly imbibe Water; but when it is faturated it receives no more, and then the overplus Water diftils towards the higher Places. And the Sea conftantly changing it's Altitude, and fluctuating backwards and forwards, may contribute much to elevate the Water; for where it is higher than ordinary, it muft certainly prefs the Water into the Earth, and drive it to the Fountain-Heads. And fince the Surface of the Ocean in every Place is conftantly agitated, and made higher and lower, not only by Storms, but alfo by the Tides, therefore fuch a Preffure as this muft happen every Day. But I queftion whether this can do much.

TO the third Argument we fay, That this is owing to the Difpofition or Situation of the Strata of the Earth, or of the Earth itfelf, and that it is

Снар. 16. of Univerfal Geography.
the nature of all Fluids to gather to a Head, where there is a Flux. I think there is no need of faying any more to this.

BUT the fourth is not fo eafily anfwered, for we do not perceive Salt to be feparated from SeaWater only by Percolation or Straining. Befide, there are two kinds of Salt in Water (which the Arifotelians did not confider) the one of which is very well named, by Chymifts, fixed, and the other volatile. The fixed Salts may indeed, by continual ftraining, or boiling, or diftilling of the Sea-Water, be feparated from it; but the volatile Salt is fo full of Spirit, that it flies up with the Water, and cannot be feparated from it, neither by frequent Diftillations nor any other Art hitherto ufed. Therefore it is very difficult to fhew how this volatile Spirit of Salt is feparated from the SeaWater, in it's Paffage from the Ocean to FountainHeads. The following Accounts will ferve our Turn. 1. Tho' we have not found out the Art of feparating the volatile Spirit of Salt from Sea-Water, yet we cannot deny but that it may be done, fince we fee it feparated by Nature, when it rains frefh Showers in the main Ocean, tho' they proceed from Vapours exhaled from the Sea. 2. The Particles of falt Water which pervade the Fiffures of the Earth, before they come to their Fountain, are mixed with other frefh Water, which proceeds from Rain and Vapours condenfed there, whereby the fmall Degree of volatile Salt that remains in them is rendered infenfible. 3. It is not true that all Fountains are entirely deprived of Saltnefs, for there are fome falt Springs, as we faid before, about two Miles from Suez, and in feveral other Places not fo far from the Sea. Therefore to feparate the volatile Salt from the Water, a long Tranfcolation, and a gentle Evaporation is required, and thus it is to be feparated by Art; and into the Sea.

THE Water of Springs therefore proceeds partly from the Sea, or fubterraneous Water, and partly from Rain and Dew that moiftens the Earth. But the Water of Rivers proceeds partly from Springs, and partly from Rain and Snow.

PROPOSITION VI.

Some Rivers in the middle of their Courfe, bide themfelves under Ground, and rife up in anotber Place, as if they were new Rivers.

THE moft famous are:

1. THE Niger, a River in Africa, which fome antient Cofmographers would have to proceed from the Nile, by a fubterraneous Chanel, becaufe it overflows it's Banks at the fame Time of the Year, and after the fame manner that the Nile does: and they could not thew a better Caufe for it's Inundation. This River meeting with the Mountains of Nubia, hideth itfelf under them, and emerges again on the Weft Side of the Mountains (c).
2. THE Tigris in Mefopotamiq, after it has paffed the Lake Aretbufa, meets with Mount Taurus, and plunges itfelf into a Grotto, and flows out at the other Side of the Mountain; allo after
(c) This River hides itfelf no where under Ground that we know of; tho perhaps we are not.certain pohetherit do or no, becaufe no Eurapeaz has traced it to it's Fountain: Only the Zeebe, a large Branch of it, (which proceeds from the Lake Zaire; and was fome time fince

[^13]CHAP. 16. of Univerfal Geography. it has run thro' the Lake Tofpia it again immerges, and being carried under Ground about fix German Miles, it breaks out again. Our modern Maps feldom exhibit fuch Receptacles.
3. ARISTOTLE (in Book i. Chap. xi. Meteor.) writes, that there were feveral fuch Brooks in the Peloponnefus about Arcadia; fome of which are mentioned by the Poets. The two following, viz. Lycus and Erafinus, are excellently defcribed by Ovid in the following Verfes.

> So Lycus fwallow'd by the yarwing Earth, Takes in another Place it's fecond Birtb: Great Erafinus now feems loft, but yields His rifing Waters to tb' Arcadian Fields. Morrice.
4. THE Alpbeus, a River in Greece, is fwallowed by the Earth, and, as the Greek Poets write, takes it's Courfe under both Sea and Land into Sicily, where it rifes, as they fay, on the Syracufian Shore, and is the fame with the River called Aretbufa in Sicily (d). This they were induced to think, becaufe that this River, every fifth Summer, did caft up the Dung of Cattle, at the fame Time that the Olympic Games were celebrated in Acbaia, when the Dung of the nlain Vietims was thrown into the Alpheus, which was therefore carried with a direct Courfe into Sicily.
5. THE River Guadiana, between Portugal and Andalufia, (formerly called Anas) hideth itfelt
(d) This (andallo the former) are thought to meer Poetical Fictions, for no fuch Rivers are found to exift at prefent. That which was anciently called Alpheus is now named Carbon or Orfea, which rifes from the

Mountain Stympbalus, and running all it's Courfe above Ground, receives a great Number of Rivers, and afterwards falls into the Gulph of Cafel di Tarnese. gufhes out again about eight German Miles from that Place (e).
6. THE Brook Dan (which together with For makes the River fordan) emerges fome Miles below it's real Fountain the Lake Pbyala; for Chaff being thrown in here is caft up at the other end of the Orifice, or where the Fountain feems to be.

PLINY and others have wrote that the Nile, in fome Places, runs under Ground; but we know, by Experience, that it runs it's whole Courfe above Ground. Arifootle alfo tells us, that the Po, a famous River in Italy, hideth itfelf for fome Space under Ground; but Experience fhews the contrary.

THE Reafon why thefe Rivers hide themfelves under the Earth and appear again, is, becaufe they meet with elevated Ground which they cannot overflow, and therefore are forced to glide into the next Grotto they meet with: or make themfelves a fubterraneous Chanel, if the Earth be foft and eafy to penetrate.

THERE are alfo fome Rivers that hide themfelves under Ground, but do not appear any more ; as we fhall fhall thew prefently.

PROPOSITION VII.

Moft of the fmall Rivers, many of the middling ones, and all the large ones, exonerate themfelves into the Sea, or into a Lake; and tbe Place wobere they difcbarge their Water is called their Mouth. Some Rivers alfo bave one Moutb, fome treo, fome
(c) This River is at prefent faid, not to bury itfelf under Ground (as was reported for-
merly) by all the Spaniards that have mentioned it.

Chap. 16. of Univerfal Geography.
tbree, and otbers more. Several of the middling, and finall Rivers diccharge themjelves into the great ones: the reft eitber ftagnate, or are fwallowed up by the Eartb.

CONCERNIN G the great Rivers the thing is manifeft, as the Rbine, the Elbe, the Danube, the Wolga, E c. The Danube difcharges itfelf at five Mouths into the Euxine Sea; the Wolga is reckoned by fome to have at leaft feventy Mouths; the Nile feven, and, when it overflows, more (f).

THE Reafon why thefe great Rivers exonerate themfelves into the Sea is their fwift Courfe, and their Plenty of Water; and why at more than one Mouth is, $\mathbf{1}$. [The Situation of the Coaft]. 2. The Shelves and Sand-Banks, which are gathered in their Mouths, and in Procefs of Time become Iflands; and if there happen to be but one of thefe, the River is divided into two Branches, and is faid to have two Mouths; if more, the Mouths are increafed accordingly. By this means the Land often gains on the Sea; and few great Rivers are found without fome Inands before their Mouths.

THE Ancients tell us, that the Nile formerly difcharged it's Water at one Mouth only, which they called the Canobian Mouth. To thefe two Caufes therefore a third may be added, viz. Human Induftry. For People often draw Canals from Rivers, or turn them thro' a new Chanel, into the Sea, partly to water their Fields, and partly for the Ufe of Navigation, and in procefs of Time thefe are made larger by the Current. And therefore we may believe the Antients, when they tell us, that all the Mouths of the Nile, except that at Canobus, were made by Human Induftry. But
(f) See the next Note below.
of this more fully in the next Propofition, where we fhall explain how it comes to pafs, that one River flows into the Chanel of another.

THE River Wolcoff, in Mufcovy, (not Wolga) arifes from one Lake, and runs into another.

RIVULETS, or Brooks, that neither run into the Sea, nor into other Rivers, are either peculiar Rivers, or Branches of others. They that are the Branches of other Rivers probably ftagnate, and do not run under Ground; and the Reafon why they do not reach the Sea is, I. Becaufe their Chanels lie low, and contain but little Water. 2. Becaufe they meet with rocky Ground, which hinders their Progrefs. 3. Several of them are made by Art, to moiften the Ground, and for the Ufe of their Water. 4. Perhaps their Mouths are ftopped or obftructed, by intervening Land, which is gained from the Sea, or by Shelves, which are increafed to fuch a Bulk as to ftop their Current; fo that they are forced to retreat towards their Fountain, or to the Place where they divaricated. Thus a Branch of the Rbine, which formerly ran into the German Ocean, at the Huys le Britain, near Catwick, is now choaked up with Sand, and ftagfiates between Catwick and Leyden.

BUT fuch as are proper Rivers, and neither run into others, nor exonerate themfelves into the Sea, but fpring up in one Place, and are fwallowed up in another, are few in Number, and very fmall; as thofe that flow from the Mountains of Peru, India, and Africa, are buried in the Gravel, or fucked up by the fandy Soil. Alfo at Meten (a Village near the Arabian Gulph) there is a fmall River whofe Chanel is full of Gravel, under which the Water in Summer-Time hides itfelf, and glides along out of Sight. If thefe Rivers find no fubterraneous Paffage they run into fmall Lakes, or Bogs; but fome of them fpring fo flowly, that they

Chap. 16. of Univerfal Geograply. 349 they are exhaled into Vapours, almoft as fant as they foring, and thus they are dried up, and neither make Lakes, nor run under Ground. There are feveral of thefe in Mufovy; as the Conitra, the Salle, the Marefsa, the feleefa, and others taken Notice of in larger Maps.
PROPOSITION VIII.

To determine wbetber the Cbanels, in wbich Rivers flow, were originally made by Art or Nature.

IT is probable the Chanels of thofe Rivers, which are not of the fame date with the Earth itfelf, were made by Induftry, for thefe Reafons: 1. We are well affured that when new Fountains break forth, the running Water does not make itfelf a Chanel, but diffures it's Streams over the adjacent Country, and therefore wants to be brought to a Chanel by Art. 2. Becaufe there are feveral Canals even now cut by Hand. So the Cbinefe have cut a Canal for the Water to run out of the yellow River into another. There are feveral other well known Inftances which I omit. 3. Becaufe fuch Lakes and Marfhes found about the Fountains of feveral Rivers, viz. of the Nile, the Tanais, the Wolga, छ c. confirm this. For fince thefe Lakes, without donbt, were made by the Effurion and fpreading of the Fountain-Water, the Inhabitants, to drain it from their Fields, which were in danger of being overflowed, made a Chanel to contain it, and carry it off. The fame is to be underftood of Rivers, whofe Heads are in Mountains.

THERE is a Queftion like this; viz. Whether the Rivers which exonerate themflives into others, have of themfelves made their way thither, or have been brought thither by Chanels made with hands?

The latter is more probable for the Reafons aforefaid. The fame may be faid of fuch Branches of Rivers as make and enclofe Inlands in the Tanais, the Wolga, and others. So one Branch of the Eupbrates, gliding thro' the Marfhes of Cbaldaa, was formerly carried that way into the Sea, but afterwards it left it's Courfe, being choaked up with Sand, and partly difperfed it's Streams among the innumerable Canals which were made by the Inhabitants to water the Fields; and partly by a new Chanel mixed it's Waters with the Tigris. And this feems to be the Cafe of other Rivers which do not now reach the Sea, but ftagnate; tho' perhaps they might have had a Paffage into it formerly.
PROPOSITION IX.

To explain why there are no falt Rivers, tho' there are fo many falt Springs.

THE Reafon is, becaufe Mankind have no occafion for falt Water, and therefore do not collect it into Chanels, fince they can have Salt at an eafier rate. But if Chanels were made as for other Rivers, we fhould have falt Rivulets, fuch as are in Lunenburg, and Hall, under Ground. And no doubt but there are feveral fuch fubterraneous falt Rivers in other Parts of the World.
PROPOSITION X.

The Cbanels of Rivers the nearer they are to their Fountains, are generally fo much the bigher; and moft of them are depreffed gradually towards their Mouths.

T H O' it may fometimes happen, that the Parts of the Chanel which are more remote from the Fountain, are higher than the Places that are nearer it ; for they are not always even throughout, but have here and there Hills and Vallies, as we may call them, interfperfed. Notwithftanding no part of the Chanel is higher than the Fountainhead.

THE Propofition is plain from the Nature of Water, which never flows but from a higher to a lower Place, and therefore every Part of the Chanel (efpecially the Mouth of the River) muft of Neceffity be lower than the Fountain; elfe the Water would flow back again to it's Source. But it is true alfo, that the parts of the Chanel are elevated either way, becaufe in many Places there are Whirlpools which draw the Water downwards; befides Shoals, Ridges, and Sand-banks, which increare the Altitude of the Chanel, and make it higher in fome parts than in others nearer the Fountain; yet the River flows forward from the Fountain towards it's Mouths, and fills the hollow Places with a greater Quantity of Water, fo that their Superficies are ftill higher than the Shoals, Sands, $\mathcal{E}^{\circ} c$. which would otherwife obftruct it's Paffage. And there are fcarce any Rivers but what have fuch Inequalities in their Chanels, efpecially the Nile and the Wolga, which in fome Places are almoft choaked up with Sand.

WHEN the Water of a River falls from a high to a low Place, if the Fall be fteep, and if it gufhes down fwiftly and with great Force, it is called the CataraEt of the River. And there are feveral fuch Cataraits in great Rivers; efpecially in the Nile; two of which are extraordinary, where the Water gufhes between the Mountains with fuch Rapidity and Noife, that the Inhabitants, within the found of them, are faid to be all deaf.

THE [Wolcoff] a fmall River in Mufcooy, hath alfo two Catarails near Ladoga.

V OL.I.

THE Laire alfo in Congo hath a Cataract about fix German Miles from the Sea, where it wholly falls from a Mountain. The Rbine hath two dangerous ones at Schaffbuyfen and Lauffenburg, where the whole River falls with a dreadful Noife, from the tops of Rocks.

B UT they that are fkilled in Hydraulics obferve, that if the Chanel of any River be depreffed one Pace in 500, it is fcarcely navigable, by reafon of it's Rapidity; and fince all great Rivers are navigable, it fhews that their Chanels in no Place are depreffed fo much as one Pace in 500 ; except where there are Cataracts and Whirlpools.

THE Depreffion of one part of a River below another, is called it's Level; and the difference between the Altitude of the Fountain-head of a River and it's Mouth, is called the Depth of the Level of a Rivar.
PROPOSITION XI.

To explain wby Rivers are broader in one Part than anotber.

THE Caufes are; 1. If the Bank, or Shore, be lower than ordinary. 2. If the Ground be foft and mouldering, and give way to the violent beating of the Waves, or to the Rapidity of the Water. 3. If the Chanel be fhallow or full of Shelves and Sands. 4. If the Water flow from a Cataract, it fpreads and makes the River broader.

> PROPOSITION XII.

To explain why the Cbanels of Rivers are more deprefled in Jome Places iban in otbers.

CHap. 16. of Univerfal Geograpby:
RIVERS become fhallow by thefe Accidents; 1. If Sands are gathered. 2. If the River run broad. 3. If it run flow.

ON the contrary they become deep, If the current runs ftrong, efpecially from a Cataract; or if the Chnael be narrow, or if the Bottom be foft and mouldering.

PROPOSITION XIII.

To explain woby fome Rivers run with a fwift Current, and others flow: and why tbe fame River (for example the Rbine) acquires different Degrees of Rapidity injeveral Places.

THE Caufes are; 1. The Altitude of the Fountain. 2. The Declivity of the Chanel, or the Depreffion of the Mouth of the River; for if the Chanel be depreffed one Pace in five hundred, the Current is fo rapid that Navigation becomes dangerous (as was obferved before) ; therefore Rivers flow with the greateft Rapidity where there are Cataracts; and thofe Torrents are moft impetuous which fall from the higheft and fteepeft Mountains. 3. The narrownefs of the Chanel, and the abundance of Water; as where a River runs between two Mountains, or Forelands.

RIVERS famous for their fwift Courfe are ; the Tigris, the Indus, the Damube, the Yrtijib in Siberia, the Malmijtra in Cilicia; which laft makes fuch a dreadful Noife, that it may be heard a great way off.

> PROPOSITION XIV.
[When the Moutbs of Rivers are broad and Ballow, and difcharge but a small quantity of Water, and that fowly, they are eafily fopped or cboaked up.]

F O R thefe Caufes make it flow with lefs Force, fo that it cannot difgorge the Sand and Earth into the Sea, but lets them fettle in it's Mouth, whereby it is foon ftopped.
PROPOSITION XV.

Fow Rivers run in a direct Courfe from tbsir Fountains to their Moutbs, but turn various ways, and make innumerable Windings and Curvatures.

THE Caufe is partly owing to the Induftry of Man, and the Motion of the Water ; and partly to the Rocks that impede and divert the direct Courfe.

THE winding Rivers are; $\mathbf{~}$. The [River of the Amazons] in South America, which makes innumerable Curvatures, fo that it's Chanel is accounted above fifteen hundred German Miles long, tho' it be only feven hundred Miles from the Fountain to the Mouth in a direct Line.
2. THE River Madre in Natolia is faid to have fix hundred Curvatures.
3. THE River Tara in Siberia is interrupted by fo many windings and turnings, that the Ruffians and Siberians, when they fail on it, often carry their Boats and their Burdens, by Land, from one Reach to another, to fave Time and Labour.

PROPOSITION XVI.

To determine whetber the Lakes that fome Rivers feem to pafs through, be made by the Rivers themfelves, or are fed by their own proper Springs, and increafe the Rivers: or whetber the Rivers that flow from them, be the fame that flow inta thein.

Chap. 16. of Univerfal Geograpby. 325
THERE are but fome few Rivers that pafs thro' fuch Lakes; the Nubia in Africa hath tive, the Niger four, and the Rbone has the Lake of Geneva, Ec.

WE faid of thefe Lakes in the foregoing Chapter, that the River which runs in, muit be compared with that which tuns out; and if this be larger than the other, there are certainly Springs in the Bottom which feed that Lake, and the River: but if it be lefs, or of the fame bignefs, then is the Lake made and fed by the River which runs into it ; and the Caufe of this Lake is the Breadth, Depreffion, and Concavity of the Chanel; and a Lake may be thus made in any River, as we faid before.

A N D if the River which runs out, be in a direct Line with that which runs in, it is to be accounted the fame, or a Part of the fame River, tho' perhaps it may be greater or even lefs, yet I think it is not to be doubted but that it is ftill a Part of the fame.

YET the Rbone enters the Lake of Geneva, and flows thro' i., but doth not make or feed it; as appears from the different Colour of the Water of the Lake, and of the River, (and other things) neither doth the Rbone make any Lakes, but is wholly fed by Springs and Rivulets. Tho' I do not fay this is certainly true.

PROPOSITION XVII.

The furtber Rivers bave run from their Fountains, the more they increafe in Breadtb; and are broadeft at their Moutbs.

THE Reafon is; 1. Becaufe that other Rivers mix with them, and continually increafe them. 2 . Becaufe the Declivity of the Chanel is not fo Y 3
great the River when fuch Breezes blow, and makes it wider by it's violent Agitation.

THE fewer Mouths any River hath, the broader they are.

RIVERS remarkable for their broad Mouths are; the great River of the Amazons in South America, the River of St Laurence in Canada, the Zaire in Africa, and the Rio de la Plata in Brafil. This laft is faid by fome to be forty Leagues broad at the Mouth, tho' others fay but twenty ; perhaps the former take in the other Mouths of this River. They that have been in Congo relate that the Mouth of the Zaire is twenty eight German Miles broad, Such Rivers as thefe pour fuch vaft quantities of Water into the Ocean, that they take away the Salenefs of the Sea near the Shore, and difturb it's Motion, for twelve or fixteen German Miles round them.

PROPOSITION XVIII.

Rivers often carry along with them Particles of various Metals and Mincrals; as alfo of Sand, and of fat and oily Bodies.

THE following Rivers are auriferous, that is, have Grains of Gold mixed with their Sands, viz. 1. Some in fapan. 2. Some in the adjacent Inlands to Fapan. 3. A Brook called Arroë, which fprings from the Foot of the Mountains of the Moon in Monomotapa (where there are Gold Mines), and falls into the River Magnice. 4. Some in Guinea, where the Negroes gather the Grains, and fepavate them from the Sand to exchange with the

Europeans,

Снар. 16. of Univerfal Geograpby. 327 Europeans, who fail thither for that Purpofe. If the Particles are very fmall they call it Gold-Duft, which is the beft, and needs but little clean fing. 5 . In all the Brooks about the City of Mexico, there are found Grains of Gold, efpecially after Showers of Rain; but there are feldom any found but in the rainy Seafons. 6. In Peru. 7. In Sumatra. 8. In Cuba. 9. In Hijpaniola, and other adjacent Iflands. 10. In Guiana, a Province of South America. i1. In the Rivulets of the Caribbees, there are found great Lumps of Gold after Showers of Rain. The Inhabitants caft Nets into the Rivers when thefe are out, and catch the Sand, from which they can eafily feparate the Gold. 12. There are feveral Rivers and Fountains in the Countries near the Alps in Germany, particularly in the County of Tyrol, from whofe Waters they extract Gold and Silver, tho' there be no Grains of either Metal to be perceived in the Water, they lies in fuch fmall Particles or Atoms. The Rbine alfo, and the Elbe has golden Clay in feveral Places. The Tagus, or Tago, a moft celebrated River in Spain was formerly famous for carrying Gold-Sands at the Bottom: but there are none now ; nor do I hear of much Riches got that way out of any River in Europe, tho' fome boaft of a fmall Rivulet in Heffe, which has Gold mixed with it's Sand; but I have not read it in any Author of Credit.

N O Rivers, which in like manner produce Silver, are taken Notice of by Authors; yet it is not to be doubted but there are as many if not more of this Sort alfo; only becaufe Silver is not fo eafily difcerned from the Sand, and no great Profit is expected to requite the Pains of extracting it, no Body has thought ir worth their while to take Notice of it. And for this Reafon there hath been no mention made of thofe Rivers that carry Grains of Iron, Copper, Tin, Eic. except

328 The Abfolute Part Sect.IV.
of fome few; tho' without doubt there are great Numbers of them in the World, at whofe furprizing effects Men are amazed; and fuperficial Philofophers have here recourfe to occult Qualities. If we obferve the River in High Germany which turns Iron into Copper (as is commonly thought), we admire that a Horfe-fhoe of Iron fhould, by hanging in it for fome Time, be turned into one of perfect Copper. But, in truth, the Iron is not changed into Copper (as is vulgarly fuppofed), but the Grains and Particles of Copper and Vitriol that are in this River, moving with the Water, corrode the Iron, whofe Particles being removed, thofe of Copper fucceed in their Places.

NEITHER is there much Notice taken of fuch Rivulets as are impregnated with various kinds of Earth, Salt, and other Foffils, but we fhall treat largely of mineral and metallic Springs, in the following Chapter.

FROM this Mixture of different Particles proceeds a ftrange Diverfity of Waters, in Rivers and Wells. Some Water if you boil Meat in it, makes it black, which is a Sign that it is impregnated with Iron; nor will Peare boil foft fo foon in this, as in other Water that is fomething fat and oily. Neither can the fame Beer be made of different Waters. That Water which hath Particles of Iron in it we call hard Water; but if it be mixed with fat and oily Particles, we call it foft Water. The Elbe is a foft Water River, as we may call it, which (as Experience fhews) is owing to the clayey and fruitful Ground it wafhes. And every other variety of Water arifes from the different forts of Earth, thro' which the Spring or River is carried, whether it be clayey, rocky, or metallic, E®c.

PROPOSITION XIX.

The Waters of moft Rivers differ in Colour, Gravity, and otber Qualities.

FOR fome Waters are black and fome dufky, fome incline to a red Colour, and others to a white.

A ND this difference is beft obferved when two Rivers meet, where we can difcern the Water of each diftinctly, after they have run fome Paces in the fame Chanel; alfo by this we may perceive their different Gravity, by Reafon that one tends more to the Bottom of the Chanel than the other.

THE Water of the River Ganges is accounted very light and wholefome, and the Emperor of Guzarat, or the Great Mogul, in whatever place he is, takes care that this Water be carried along with him in Bottles, of which he alone drinketh. Others will have the Nile to produce the fofteft and moft wholfome Water. Heavy Water is for the moft Part impregnated with Iron or Mercury.

T O underftand the Nature of great Rivers we muft look into the Rivulets that compofe them; (for the Rbine receives many mineral Rivers, and the Danube takes in fuch as carry Gold, Iron, Vitriol, \mathcal{E}_{c}.) from whence their different Qualities arife, tho' moft Fountains have fomething of thefe in them.

PROPOSITION XX.

Some Rivers, at a fet Time of the Year, rife beyond their Banks, and overflow the adjacent Countries.

THE firt and moft celebrated among thefe is the Nile, which fwells to fuch a degree that it covers
all the Land of Egypt, except the Hills. The Deluge begins about the feventeenth of fune, and increafes forty Days, and decreafes as many, fo that at this Time, all the Cities, which are moft of them built upon Hills, appear like fo many Inlands. Antiquity hath given a large Account of this Inundation, becaufe in that Part of the Earth which was then known (before the eaftern and weftern Parts were difcovered) no River was found to be the fame, except the Niger, which therefore was fuppofed to communicate with the Nile under Ground. Sencea has defrribed the Inundation of the Nile the beft of all the Antients, and therefore I cannot but give it in his Words.

- T HE Nile ($($ ays $b c)$ is increared in the middle 6 of Summer, from before the rifing of the little - Dog-Star, to beyond the Autumnal Equinox. - Nature hath placed this moft noble River in the - Sight of all Mankind, and ordered it fo, that - it fhould overflow Egypt at a Time when the Earth, ' being drieft with the Summer Heat, might fuck
' in more of it's Water, and fufficiently quench
' it's annual Thirft. For in that part of Egypt
- which lies towards Etbiopia there are few or no
- Showers, and thofe that fall do not refrefh the
- Earth, which is unaccuftomed to Rain-Water. - Egypt builds her whole hope upon this, and 6 is fertile, or barren, according as the River af' fords it more or lefs Water. The Hubband' man never minds the Heavens, and the Poet ؛ Ovid does not jeft when he fays.

> The Herbs befectb not Jove to pour Himplef upon tben in a Sbower.

- If we knew where it begins to increafe, we might
© perhaps find out the Caufe of it's Increafe. But s affer it hath wandered over valt Defarts, and - made
made it's way thro' Fens and Marihes, and unknown Countries, it collects it's diforderly Waters about Pbilas. The Inand of Pbilas being on every fide rocky and rugged, is wafhed by two Rivers which there come together and furround the whole Ifland. Thefe lofing their former Names, mix together and are called the Nile, which being increafed in breadth, glides gently from thence thro' Etbiopia, and the fandy Defarts that afford a Paffage to the Commerce of the Indian Sea. The Cararacts afterward receive it, which fill the Eye with fomething great and amazing; there the Nile rufhes againft the broken Mountains in it's way, and is forced in to the narrow Paffages and Hollows that are made in the hard Rocks, dafhing againft the Stones that obftruct it's Current, and overflowing fometimes all the Obftacles that interrupt it. Here it's Courfe is obftructed, which makes it rife in waves and furges: and there it is confined between two Rocks, and frets and foams to be enlarged; fo that it's Waters, which before glided gently, along, being now put into a violent Agitation, rufh from one Rock to another, and make it appear more like a Torrent than a River. Now it looks thick, muddy and troubled, and half covered with Froth, which is not it's natural Colour, but owing to the
6 Injury of the Places it flowed thro'. At length
* having freed itfelf from all Obtacles, it falls on

6 a fudden from a prodigious Height, and with
6 a Noife dreadful to the Country thereabouts;
6 which a Colony that were placed there, by the

- Perfians, could not endure; their Ears being
' fo ftunned with the continual Noife, that they
' were forced to tranfport themfelves to more
6 quiet Habitations. The incredible Boldnefs of
6 the Inhabitants is reported among the Miracles
6 of this River. They get into their Boats by
pairs, the one guides it, and the other throws out the Water, and after they have tumbled fome Time among the raging Waves of the Nile, they get into the narrowett Chanels, and
avoid as much as poffible the dangerous Creeks in the Rocks; then guiding the Boat with their Hands, they are carried headlong down the middle of the Current, by the force of the whole River, and when the Spectators are in great Fear, and begin to lament, believing they
are overfet: and drowned by the great Weight of
the Water, yet they are in an inftant feen failing a great way from the Place where they fell down, being carried as fwift as a Stone out of an Engine: Nor does the Boat in it's Fall overfet, but is carried fafe into the fmooth Water. The firlt rifing of the Nile is perceived about the forementioned Ine of Pbilas, a little way from whence 6 it is divided by a Rock (called, by the Greeks, Abaton) which none ever afcend but their Ru-
lers : there the rifing of the River is obferved
and marked upon the Sides of the Rock. A
- great way below this there are two eminent
- Rocks, called, by the Inhabitants, the Veins of
the Nile, from which a great Force of Water
- floweth ; yet not fo much as to do any harm to
- Egypt. The Priefts throw Offerings in at thefe
(Mouths, and the Governours Gifts of Gold;
while the holy Rites are performing. From this
- Place the Nile feemsas if it had got new Strength,
© and is rolled along a narrow and deep Chanel,
- being hemmed in by the Mountains on each Side, and hindered from enlarging it's Breadth.
- When it comes to Mempbis, it is again at Li-
- berty, and wanders over the Country, dividing
- itfelf into Rivulets, and diffufing it's Streams
' over all Egypt, thro' innumerable Canals, 'made
! by Art as commodious as poffible. At firt it
- feveral other fmall Branches and Canals that are cut from one Shore to another. Moreover it 6 breeds living Creatures, equal in Bulk and
- Noxioufnefs to any at Sea, from whence one may
- judge of it's greatnefs, by it's affording Room
- to play in, and Suftenance fufficient for fuch
- vaft Animals. Babillus, the beft of Men, and
- fkilled in all kinds of Learning, relates, that
- when he went Governour into Egypt he faw
' at the Heracleotic Mouth of the Nile (which is
- the greateft) a Company of Dolphins coming
' from the Sea, that were met by a Troop of
- Crocodiles from the River, as it were to give
- one another Battle. The Dolphins, tho' they
- are harmlefs Animals, and do not bite, yet
' they were too powerful for the Crocodiles;
' whofe Backs are hard and impenetrable even
' to the Teeth of larger Animals than themfelves,
- but their Bellies and lower Parts are foft and
- tender ; into thefe the Dolphins, fwimming un-
' der Water, thruft their long Spikes, or prickly
6 Fins, which they carry upon their Backs, and
- wounded them fo that they let out their Bowels,
- by which feveral of them being killed, the reft
' turned their Tails and fled. They are Crea-
- tures that fly from the bold, and purfue the timo-
- rous ; nor do the Inhabitants of Tentyra over-
- come them fo much by their natural or fupe-
' rior Valour, as by their Rafhnefs and Contempt
- of them; for they follow them of their own
- Accord, and drive them into the Snares of Nets
- that are fpread for them; tho' a great many of
- them, that have not Courage enough to purfue
- like the reft, are deftroyed. Theopbraftus relates,
' that the Nile once brought down Sea-Water ;
c and it is certain that when Cleopatra reigned it
* did not rife for two Years, viz. in the eleventh
- and twelfth Years of her Reign; which they fay

6 portended

- portended bad Fortune to two great Perfons, 6 viz. to Antony and Cleopatra, who foon after ' loft their Empires. Callimacbus relates, that the - Nile in former Ages did not overflow for nine - Years.
- NOW I come to enquire into the Caufe of ' the Nile's overflowing in Summer, and I fhall ' firft begin with the Opinions of the Antients.
- Anaxagoras was of Opinion, that the melted
- Snow is poured down, from the Mountains of
- Etbiopia into the Nile, and makes it overflow;
' and all the Antients believed this to be the
- Caufe; AEchylus, Sopbocles, and Euripides, have
' taught the fame. But this is evidently falfe
' for feveral Reafons: Firft, Etbiopia is the
' hotteft Country upon Earth, as appears from
' the tawny or Sun-burnt Colour of the Inhabi-
- tants, and the Troglodytes who build their Houfes
' under Ground: the Rocks alfo are as hot as
- Fire, not only at Noon but even at the clofe
' of the Day; the Duft under foot is fo hot that
- Men cannot walk upon it ; Silver is unfoldered;

6 the Joints of Images are disjoined, and what-
' ever is laid on them for Ornament diffolves or
' is peeled off; the South Wind, which blows
' from thefe Places, is immoderately hot, and
' thofe Creatures, as Serpents, $\mathcal{E c}$ c. that elfewhere
' ufe to hide themfelves in the Winter, never

- withdraw there, but are found in the open Field
' all the Year. There is no Snow nor heavy
- Rain falls at Alexandria, which is a great way removed from thefe immoderate Heats. How therefore fhould a Country fubject to fo much
Heat, be covered with Snow all the Winter?
Some Mountains indeed may have Snow on them there, but not more than the Ridges of Tbracia
or Caucafus; and the Rivers that flow from thefe
\leqslant laft, fwell in the Spring, and the beginning of
© Summer,

Сн ар. r6. of Univerfal Geography. 337
' it depended upon their Force. Moreover, thefe

- Winds blow againft the Shores of Egypt, and
' the Nile defcends the contrary Way againft them,
' but why thould it not flow from whence they
' blow, if it hath it's Origin from them? Befides,
' it would flow from the Sea pure and green,
' not troubled and muddy as it doth now. Add
' to this, that innumerable Witneffes contradict
' this Teftimony, and tho' Men might lie fafely
' and put any Fables upon us, as long as the
- Coafts were unknown; but now the foreign
- Coafts are frequented by Merchant-Ships, yet
- none of them mention the green Colour of the
c Nile, or that the Sea hath any other Tafte than
' ufual ; which is alfo difagreeable to Nature, for
' the Sun evaporates the lighteft and frefhert
- Particles. Befides, why doth it not increafe in
- Winter, when the Sea is fometimes raifed with
' greater Winds than thefe annual ones, which
' are commonly moderate ; and further, if it pro-
6 ceeded from the Atlantic Sea it would cover
- Egypt at once, and not by Degrees as it does.
- Oenopides of Cbios fays, that in Winter the Heat
' is kept under Ground, and therefore Dens and
c Caverns are then hot, and Fountain-Water is
- warm alfo, that the Veins of the Earth are dried up
- by the internal Heat ; but in other Countries the
- Rivers are replenifhed with Rain: only the
- Nile, which is not fupplied with Rain, is leffened
- in Winter, and increafes in Summer, when the
c interior Parts of the Earth are cold, and the
s Fountains are frefh and cool. But if this were
- true, all the Fountains would increafe, and run
- over in Summer. Befides, the fubterraneous
- Heat is not greater in Winter, tho' Water, Caves,
- and Wells, are then warm, becaufe they do not
- admit the external cold Air ; fo that they are not
- abfolutely hot, but only exclude the cold : for VOL. I.

2

- this
' this Reafon they are cold in Summer, becaufe ' the hot Air is kept from them. Diogenes Apollo-
' niales fays, that as the Sun draws Moifture to it,
' fo the dry and parched Earth draws it from the
' Sea and other Waters; for it is impoffible that
' one Part of the Earth fhould be dry, when ano-
' ther is moift, becaufe it is all over perforated and
' full of Intercourfes, thro' which the dry Places
' draw Moifture from the wet, otherwife they
' would long fince have been burnt up. For this
' Reafon, the Sun draws the Waters to it, and the
' meridian Places that have moft need of it ; alfo
- where the Earth is moft dried, it draws moft
- Moifture to it. As in Lamps, the Oil runs to-
- wards the Place where it is confumed, fo the Wa-

6 ter runs towards that Place where the Earth is
' parched up with Heat. From whence therefore
' fhould it come but from the cold northern

- Parts? Does not the Propontis for this Reafon
- conftantly flow into the lower Seas, not as o-
' thers do by a Flux and Reflux, but by a con-
' ftant and rapid Courfe towards the fame Point?
- And unlefs by thefe Intercourfes, Places that
- wanted were replenifhed from thofe that abound-
' ed, the Earth would be foon dried to Duft, or
- laid under Water. I would willingly afk Dio-
- genes, why, fince the Sea and all Rivers meet
- together, they are not larger in all Countries
- in the Summer? The Sun ficorches Egypt more
- than other Countries, and therefore the Nile in-
- creafes more: and in other Parts of the Earth
' there is alfo fome increafe of the Rivers. But
- I ank him, why then is there any Part of the
- Earth without Moifture, fince the hotter it is in
' any Place the more Moifture it draws from o-
' ther Countries? And laftly, why is the Nile fo
- fweet, if it receives it's Water from the Sea? For
' no Water is fo fweet as the Water of the Nile.' the Opinions of the Antients (efpecially of the Greek Philofophers) about the Caufe of the Int undation of the Nile. But none of them are true, becaufe in thofe times no Body had travelled out of Europe, fo far as the Springs of the Nile, or had vifited the Nations that border on them, which are very remote from Egypt. But the Matter is now well fearched into, and the true Caufe is found out, fince the Portusuefe, and alfo the Englifb and Dutch, trade with the Nations that border upon thefe Springs, in the Kingdoms of Congo, Angola, Sofala, Mozambique, \&c. (g).: From thefe
(g) Since we feem to have a better Account of the Nile than our Author had in his Time, it will not be amifs to tranfcribe a New Defcription of it from Mr Salmon's Prefent State of all Nations, Vol. 5. Pag. 10, 11.
- The River Nile, or Abancs, 6 which in the $A b y \sqrt{3}$ ine Lan-
' guage fignifies the Fatber of
- Rivers, hath it's Sources as is
- generally held, in 11 or 32
- Degr. of northern Latitude in

6 the Empire of $A b y / F_{i n i a}$: but
6 whether the Por turuefe Jefuits,

- as is pretended, or any other
- Perfons have difcovered the
- very Fountains it iffues from,

6 is very much queftioned. I

- perceive, the Country where
- it rifes, as fome of the Natives
- relate, is covered with vaft
- impenetrable Woods. This
- River runs a Courfe of about
- Fifteen hundred Miles from
- South to North for the moft
- Part, and a little below Cairo,
- dividing itfelf into two Bran© ches, one inclining to the Eaft
' and the other to the Weft, fall - into the Mediterranean; the - two Mouths being about a
- Hundred Miles afunder, As - for any other Branches of this - River our Modern Travellers
- take no Notice of them, and - probably thofe that have been - mentioned by antient Writers c were only Canals cut from one c of thefe, particularly the Canal - which was made to convey the c Water from the River to Alex-- andria feems in our Maps to be - laid out for one: However cer-- tain it is, that there are no o-- ther Branches navigable at this - Day than thofe of Damietta, - and Rofetto. While the River - is contained within the Bounds - of the ordinary Chanel, I do - not find it is broader at Old - Cairo than the Tbames at Lon-- don, and in the dryeft Seafon - of the Year is fordable in many - Places. In the upper Parts of - the Strcam there are feven - Cataraits, where the Wate ${ }_{r}$ f falls in fleets froma very great
thefe we underftand that the Fountains of the Nile are in the great Lake Zaire, fituated in the Foreland of Africa, in the middle between the eaftern and weftern Shore, as was faid in the former Chapter. Near to this Lake are feveral Ridges of Mountains, particularly thofe called the Mountains of the Moon, and of Seth, between which the Lake lieth as in a Valley among the Mountains. And becaufe thefe Places lie on the South Side of the Equator, the Motion of the Sun requires that it fhould be Winter with them when it is Summer with us; but by Reafon of their fmall Diftance from the Equator, they have little or no cold Weather, but Rain (inftead of Snow) for two Hours before and after Noon, every Day, in the Kingdom of Congo. And the Clouds (fcarcely ever permitting them to fee the Sun) feem to cover the Tops of the Mountains, and pour down continual Showers of Rain upon thofe mountainous Places; which flow from thence like Torrents, and have their Confluence in the Lake Zaire; from whence they are difcharged into the Chanel of the Nile, Coanza, Zaire, and other Rivers, which have their Rife from this Lake; but they do not overflow fo much (tho' the Zaire makes an Inundation every Year in the fame manner) as the Nile, becaufe their Chanels are deeper, and after a fhort Courfe they exonerate themfelves into the Sea; yet all of them increafe at the fame time, and difgorge a vaft quantity of Water into the Ocean. Therefore it

[^14] appears that the Inundation of the Nile is caufed by the vaft quantities of Water it receives from thefe continual Rains; but the Caufe of thefe Rains is unknown, tho' it be likely they proceed from the fame that generates Rain and Snow with us in Winter, which make Inundations not only in the Nile but in our Rivers, when they fall in a greater quantity than ordinary, as every one knows from his own Obfervations.

THE Time when the Nile begins to overflow, and alfo when it ends, agrees with this Caufe; for the Winter, or rainy Seafon, in Congo and the mountainous Places, begins in our Spring, about the middle of March or April (which is the Time of Autumn to them, viz. from May the Twenty firft to \mathcal{f} une the Twenty firft) but is not fo vehement as in May, Fune, and Fuly: in Auguft and September it is alfo moderate, and ends in the middle of September. The rifing of the Nile, as was faid before, begins about the feventeenth of Fune in this Age. But Herodotus teftifies that the Nile, in his Time, was a hundred Days in rifing, and as many in falling ; therefore it began to increate fome Weeks fooner, viz. about the firft of fune, or in May, and before that it mult have rained fome Time upon the Mountains, bordering upon the Lake, that is, from Marcb to May or fune. But the Reafon why it begins to overflow not fo foon now as formerly (viz. in the Time of Herodotus, when it feems to have begun in April) is becaufe the Nile, by bringing down Mud and terreftrial Matter, hath made the Ground, which it overflows, higher, and therefore the Chanel is lower and deeper (as well by this as by being fcoured by the rapid Current) and contains more Water than formerly, which is the Reafon that it doth not fo foon overflow it's Banks. And no doubt but the Nile, in a great many Ages, may not Time may make a Chạnel big enough to cont tain allithe Water of the River when it is at it's Height.
B UTs:we have fiid too much of the Nile, and more tlan we intended.

THE fecond of thefe Rivers, that overflow the adjacent Countries at a certain Time of the Year, is the Niger, a River in Africa, of no lefs Courfe than the Nile, tho' not fo famous. It overflows at the fame Time that the Nile does. Leo Africanus fays, it begins to rife on the fifteenth of $\begin{gathered}\text { fune, and increafes forty Days; and decreares }\end{gathered}$ as many. When it is at the Height, People may fail : in Boats all over Negroland, tho' not without great Danger.

THE third River that overflows is the Zaire in Congo, as was faid before ; and to this may be referred other Rivers in the fame Country.

THE fourth overflowing River, is the Rio de la Plata in Brafi, which waters the adjacent Fields at the fame Time with the Aile, as Maffeus obferves.
T HE fifth is the Ganges.
THE fixth is the River Indus, Thefe two laft pour out their Waters upon the' Earth in the rainy Seafon viz. in Fune, July, and Auguft, when the Inhabitants gather the Water into Porids, and preferve it, that they ninay be fupplied at other Times of the Year, when there is almoft no Rain. This Inundation makes the Land very fruitful,
T HE feventh includes a great many, viz. four or five that flow from about the Lake Caamay in moderate large Chanels, and exonerate themfelves into the Bay of Bengal, flowing thro' Pegu, Siam, and other Places. That River which waters thei

Снap. 16. of Univerfal Geography. Royal City of Siam is called Menam, and oyerflows in September, Oztober, and November, at which Time the Fields and Streets in the City are all covered with Water, fo that the People are forced to make ufe of Boats to fail from one Houfe to another. This alfo caufes an exceeding Fer, tility.
THE eighth is the River [Mecon] in Cambodia, which overflows in Summer ; but is not right placed in Maps.

THE ninth is the River [Paraguay, which is a Part of the Rio de la Plata] and overflows at the fame Time with it, and the Nile.
THE tenth includes thofe in Cormandel in I_{n} dia, which overflow in the rainy Months, and are fed by the Rain that is poured from mount Gaté.

THE eleventh is the Eupbrates, which overflows Mefopotamia on fome particular Days of the Year.
THE twelfth is the River Sus, or Agus, in Sufa; which overflows in Winter.
I do not remember to have read of any other Rivers, befides thefe, that overflow annually at a ftated Period, tho' there are feveral that do it moft Yearss, as the Oby, the [Hoambo] or Cellow River in Cbina, $\mathcal{E}^{\circ} c$.
THE RE are many Rivers that overflow without keeping a fet Time, and indeed fcarce any of the larger Sort but what break over the Banks, at one Time or other, as the Elbe, the Rbine, the $W_{f} f e r, \mho^{\circ} c$. And if it were not for the Depth and Capacity of the Chanel, all great Rivers: would annually overflow; for moft of them are vaftly increafed in the Spring And't may fo happen, that a River which did not ufe to overlow may begin to do it yearly, if any Part of the Chanel be raifed higher by Sands, or otherwife, fo as almoft Z 4
to equal the Height of the Banks. Bit to prevent this, Men commonly raife the Banks in proportion.

THE fole Caufe of thefe Deluges is the great quantity of Water which in fome Places is drained from the melted Snow, and in moft others, proceeds from frequent Rains and violent Showers. Yet it is to be admired why the Injus and the Ganges fhould not overflow at the fame Time that the neighbouring Rivers do, which proceed from the Lake Cbaamay ; tho' it may be thought perhaps that this difference of Time, is partly owing to the anniverfary Rains in the adjacent Places, and partly to the Mountains that furround the Sources or Spring-Heads, as we faid of the Nile; but to avoid Prolixity, we fhall forbear examining every Particular. The River [Aijne] near Paris, in France, fometimes fwells fo much, without any more Rain than ordinary, as to overflow the Suburbs of St Marcellus, and do a great deal of Damage.

THE Reafon why almoft all thefe Deluges make the Fields fertile, is becaufe the Water that overflows them is either melted Snow or Rain, which being light and fpirituous, and containing fulphureous Matter mixed with it in the Air, is more prevalent to make the Ground fruitful, and alfo more wholeforne than mineral Water; and that Rain-Water contains fuch Sulphur and Spirit, appears, I. From the Worms that are bred in it. 2. From it's quick Putrefaction. 3. From the chymical Diftillation of it. Yet there are fome Rivers that do not make the Land fruitful by their Inundation but rather barren, as the Loire in France; whillt the Seyne, with it's fat and foft Waters, makes the Land fertile.

PROPOSITION XXI.

To explain bow Springs break out of the Earth.
W E have fhew'd in the fourth Propolition, whence the Water proceeds that flows out at Fountains; we now come to enquire how the Collections of Waters are made to fpring out of the Earth, which one would think could not be done withont a violent Perforation of the Ground. But there are various Caufes that make way for a Spring: I. If there be a Cavity, or Receptacle, in any Place, the Water, of it's own Nature, and without any other Caufe, will diftil and drain into it, and, in procefs of Time, by conftantly pervading the Crannies and Paffages, will make them larger, 'till at laft the Cavity be full, and overflow into a Rivulet; and the fame may happen if there is no Receptacle, if the Spring be upon the Side of a Mountain, or even upon the Top of it. For this Caufe there are feveral Springs found in Woods, and fhady Places, where the Rain-Water moiftens the Earth; and becaufe it is not fo foon evaporated by the Heat of the Sun, or a free Air, it draws to it by degrees the fecret Water of a future Fountain. 2. The Spirits that are mixed with the Waters yet in the Earth, and the Rarefaction of them whereby they take up a larger Space, often remove the Earth, and make way for Fountains ; for Water is more fpirituous while it is hid under Ground: fubterraneous Fires alfo contribute much to it's Rarefaction. 3. Fountains are brought to Light by Showers of Rain, which pervade the Pores of the Earth, and enlarge them, and by mixing with the fubterraneous Water, draws it to a Head, by a mutual Coherence or Attraction. 4. Sometimes Fountains their Snouts. Thus the firit of the Salt-Springs in Lunenburg was difcovered by a Hog's rooting up the Ground, and making a Gutter, into which the Water fpouted up, and filled it, and he (according to the nature of them) laid himfelf down in the Water; when he had got up again, and the Sun had fufficiently dried his Back, fome body difcovered a certain whitenefs, upon him, which, being more narrowly obferved, they found to be white Salt, then they fought for the Place where he had laid down, and found it to be a Spring, producing Salt; which made them begin to feek for more, and they foon difcovered teveral others. From this the Town acquired all it's Riches and Splendor, and to this very Day there is kept in the Stadt-boufe of Lunenburg the fame Hog quartered and fmoaked hanging upon a Beam, whofe Parts are grown fo thin, by length of Time, thiat they feem to be only Pieces of Leather.

> ari PROPOSITION XXII.

4 Place being given in the Eartb, ta.know if a Founs tain:or Well may be made in it.
-VITRUVIUS in his Architecture (Book viii. cap. I learnedly affigns the Marks by which we may know this, from whom Pliny and Palladio have borrowed what they wrote upon this Sutject. Befonus hath added Ito it in his Book publihied the fame Year 5569. We fhall here give Wiruvius'sown Words:
' are to feek out their fubterraneous Feeders, and - collect their Waters together, which are thus to
' be found. A little before Sun-rifing, lie with your Face clofe to the Earth, in thofe Places where the Water is fought for, and fupporting your Face with your Chin upon the Ground, look round the Country ; for by this means the Sight, being no

- higher than it ought to be, will not mittake, but
- fee as much of the Country as is upon the fame
' level; then where you obferve the Vapours to
6 vibrate backwards and forwards, and to rife up
' into the Air, there you may dig ; for this Sign is
- never obferved in a dry Place. Moreover, theỳ
' that fearch after Water, ought to confider the
' Soil, for there are different Sorts of Water in
- different Soils. In chalky Ground the Watet is
- fmall and weak, of no great Depth; and not of
' the fweeteft Tafte; in loofe gravelly Ground it
' is alfo weak, and if it be drawn from a great
- Way under Ground, it is muddy and bitter; in
' black Ground, there are found feveral fmall
- Drains and Runnels, the Water of which, being
- collected into Ponds, made in firm and folid
- Ground, has an excellent Tafte; in fandy Ground,
' or among Grit, there is moderate Water, but no
- Veins of it found, yet what there is in it is very
' good; in hard gravelly Ground, mixed with Par-
' ticles of Coal, you are fure to find excellent,
' well tafted, Water ; in red ftony Ground there is
' plenty of good Water, if it do not fink into
' the Interftices and wafte away the Stones; at the
' roots of Mountains, and among Flint Stones,
' there is the coldeft and moft wholfome Water,
' and the greatelt Plenty of it; but Springs that
- are found in low champain Ground, are falt,
' heavy, warm, and unwholfome; unlefs they
© come in fubrerraneous Paffages from the Moun-
- tains,
${ }^{6}$ tains, and break out in a part of the Plain that is well fhaded with Trees, for then they excel the Mountain Springs in fweetnefs. There are feveral other Signs to find Water by, befides thofe already mentioned; as if there be found growing in any Place, nender Bull-rufhes, wild Willows, Alder Trees, Agnus cafus, Reeds, Ivy, or the like, which cannot grow or be nourifhed without moitture (tho' thefe alfo ufe to fpring up in Ditches, into which the Rain-Water is drained from the adjacent Fields in Winter, and is there preferved longer than ordinary, but you ' muft not truft to fuch Places) only in thofe
- Countries or Places which have no Ditches, and
' where thefe Signs appear growing naturally;
' Water may be fought for. And in thofe Coun-
' tries where there are no fuch Signs ; to find the Water, let there be dug a Place about three Foot broad every way, and no lefs than five Font deep, and let there be placed in it, about Sun-fet, a brafs or pewter Difh or Bafon (whicht is at hand) upfide downwards, befmeared all o:
' ver on the infide with Oil; let alfo the top of ' the Place be covered with Leaves or Reeds ' caft upon the Earth; the next Day let it be o ${ }^{*}$ ' pened, and if there be Drops, or a Sweating; in the Veffel, there is certainly Water there. Alfo if there be put in the fame Place a Veffel made of Chalk not boiled, the Veffel will be dif? folved or at leaft very moirt if there be Water there; if a Fleece of Wool be placed there over Night, and if the next Morning Water - may be wrung out of it, it is a Sign that there E is plenty of Water in that Place. If a trimmed
- Lamp, full of Oil and kindled, be put covered into that Place, and the Oil is not fpent the
f next Day, but fome Relicks both of the Oil and ' the Wick fomething moit is left, it thews that
there is Water there; becaufe all Heat draws moifture to it. If a Fire be made there, and the Earth be throughly warmed and burnt, and a Cloud of Vapours arife, that Place affords Water. When thefe Things are tried, and the foremention'd Signs appear, a Well may be funk there, and as foon as Water is found, Chanels - may be dug round about to bring it to a Head.
- But thefe are to be fought for chiefly in Moun-
' tains and northern Countries, where the Water
- is more pleafant, wholefome, and plentiful; for
' they are turned from the Courfe of the Sun,
' and are frequently covered with Woods and
6 Trees, and the Mountains themfelves afford cool
- Shades, fo that the direct Rays of the Sun do
' not reach the Earth to draw out it's moifture.
- The Vallies between the Mountains alfo receive
- a greater Thare of the Showers, and the Snow is
- longer preferved under the fhade of Woods and
- Mountains; which being melted, pervades the
- Pores and Veins of the Earth, and is carried to
s the very Roots of the Mountains; where it ' feeds fome Fountain or other with Water. But,
' on the contrary, in plain champain Countries,
6 they have feldom plenty of Water, and if they
- have, their Springs cannot be fweet, becaufe the
- vehement Heat of the Sun, being uninterrupted
' by any Shade, fucks up the moifture; and if
- there be any fine, light, and wholefome, Water
- above Ground it is evaporated by the Heat

6 of the Air, and the hard, heavy, and unwhole-
' fome Particles are only left in thefe Fountains.'
BUT at this Day, without regarding any Signs, they dig up the Ground fometimes to a great Depth, where there are, for the moft part, found Veins of Water, or Spring-heads, or Red ceptacles of Water, or fubterrancous Rivers.

OTHERS fuperftitioully take the Branch of a Hazle-Tree, cut down at certain Afpects of the Planets, and pretend to know thereby where Water lies concealed.

PROPOSITION XXIII.

To make a Well or Fountain in a given Prlace, if it be polfible.

LET us again ufe the Words of Vitruvius, becaufe he was a Perfon well verfed in there Affairs; and I myfelf never practifed any fuch Bufinefs.

- REASON (fays he in Chapter vii.) muft not ' be defpifed in digging of Wells; and the na' ture of Things is to be diligently fearched into, ' becaufe the Earth hath feveral Sorts of Matter
' in it, and is (as all other Things are) compo-
' fed of four Principles, of which the Earthy Part
' itfelf is one; and Moifure, from whence Foun-
' tains proceed, is another: alfo Fire and Heat,
' from whence proceed Sulphur, Alum, and
' Bitumen, and the thick Spirits of Air, which ' pervading the Pores, Interftices, and Fiffures
' of the Earth, gather to the Place where the Well
6 is funk, and fend the natural Vapour they bring
' along with them into the Noftrils, and ftop the
- Motion of the animal Spirits, fo that unlefs
- they can quickly get out they immediately
- perifh. But to prevent this, they fhould let
' down a lighted Candle, which if it continue
' burning, there is no danger in going down;
c. but if it be put out, by the ftrength of the
© Vapour, then they muft dig in other Places
- near this Shaft, and make Tubes (that the Earth
' may have Noftrils as it were) to difcharge the
' noxious Vapours out of it's Bowels. When thefe

Ciap. r6. of Univerfal Geography. 35!

- are finifhed, and you are come to Water, let
' the Well be built round within, but not fo as
' to ftop the Veins from running; but if the Earth
' be hard, and the Veins not quite at the Bottom,
' then muft Plaifter-work be made to receive the
6 Water from the Ledges and upper Places. To
' make your Plaifter durable, let the fineft and
chardeft Sand be got, and a certain Weight of
Flint broken to powder; mix the Sand with the beft quick Lime, two Parts of the one to five of the other, and add to this the Cement or Powder ; with which plaifter the Sides of the Well to the intended Depth, and faften it with Beams of Wood nailed into it, left it fhould fall in. This being done let the Earth in the
' Bottom be clean taken out as far as the Plaifterwork goes, and when it is levelled, ram the ' fame fort of Plaifter upon it, to what thicknefs you pleafe. If this Work be repeated over and over, and the Plaifter laid on thick, the Water, by being ftrained thro' it, will be more refined and made more wholefome; for the Mud by it's fubfiding will make the Water clearer; and it will keep it's Tafte without ' any noifome Smell; otherwife it may be needful ' to add Salt to refine it.
PROPOSITION XXIV.

To know wbetber Fountain-Water be wholefome.
OF this Vitruvius writes thus (Book viii. Chap. v.)
c The Proof or Trial of Fountains is to be made in this manner. If they bubble out of the Earth
' and flow, let the Inhabitants that live near the
© Fountain-Heads be obferved, and if they have

* ftrong Conftitutions and healthy Bodies, are well
© coloured, without diftorted Limbs or blear
\leq Eyes,
- Eyes, the Waters are certainly good. In like
- manner if a Well be new funk, take fome of
- the Water and fprinkle it upon a Veffel made

6 of the beft Brafs, and if it leave no Spots or

- Stains, it is the beft of Water. Let it alfo be
- boiled in a brazen Kettle, and if, after it is
- fettled and poured out, there be no Sediment
' of Sand or Slime at the Bottom, the Water
' is certainly good. If Peafe or Beans be - quickly boiled foft in it, it is a Sign the Water ' is good and wholefome. Likewife if it appear
- clear and tranfparent in the Fountain, and no
- Mofs or Bull-rufhes grow in any Place where it
' flows, alfo if the Places be no way corrupted
6 with Filth, but are of a fine fort of Earth;
' thefe are all Signs that it is light and whole-
' fome Water.'

PROPOSITION XXV.

To make an artificial Fountain in any Place if it be poffible.

A Fountain is faid to be artificial or only apparent, when it is fed by a fubterraneous Chanel conveying Water from a higher Place; as we fhewed in Propofition 5. Such an one as this may be made, if there is any Lake, River, or Fountain near, viz. by cutting a Chanel under Ground from the Place propofed to one of thefe, whereby to convey the Water; as we Mall fhew in the next Propofition.

PROPOSITION XXVI.

To bring a River from a given Fountain, or River, to a place appointed.

IF the Fountain or River is higher than the propofed Place, it will be eafily done by thofe Inftruments that are ufed for levelling Places, to convey Water from a certain Height to fuch or fuch a Level. Let there be therefore a Chanel cut from the Fountain or River to the Place propofed, and let it incline, or be more or lefs levelled, according as you would have the Water to run flow or fwift, for you are not ftinted by this Problem. To make Aqueducts that will convey Water with a moderate Celerity, they commonly deprefs the Chanel no lefs than half a Foot in five hundred, otherwife the Water will run too flow, or not at all. Vitruvius requires no lefs than half a Foot in one hundred and no more than a Foot, or at moft a Foot and a half, otherwife the Courie will be too fwift and rapid: But if the Fountain be not higher than the given Place, you muft ufe Engines for raifing the Water, for the making of which you muft confult Mechanics: and other things are to be confidered in this Affair. Some of the Frencb write, that the River Seine, in running from the Arfenal at Paris to the royal Gardens of the Tuilleries, which is five hundred Fathoms, falls fcarce one Foot; but it is to be confidered that in fome Parts of the Chanel there is no need of fo great an Inclination, the Water having acquired fome Force already. By this Problem Rivers are alfo joined, and Canals cut from one to another for the Ufe of Navigation; as from the Tanais [or Don] into the Wolga, and VOL.I. A a from from the Hoambo, or Yellow River, to the [Kians or] Blue River in Cbina, $\xi^{3} c$.

PROPOSIT:ION XXVII.

Some Rivers are remarkable for their long Courfes, otbers for their Breadth, fome are famous for their Swifiness; and others for the peculiar Nature of the Water they carry; and fome again for two or more of thefe Properties.

THIS Propofition requires no Proof. We need only enumerate thofe of the larger fort, viz. that have a long Courfe, and are famous for their Breadth: of fuch there are but fixteen hitherto difcovered. The Nile, Oby, FeniJa, [the River of the Amazons], Rio de la Plata, Parana, Miary, Oroonoque, Ganges, Danube (b), St Lawrence in Canada, Niger in Africa, Nubia, Wolga, the blue and the yellow River in Cbina.

T HOSE famous for Breadth, tho' not of fo long a Courfe, are about twenty. The Indus, Zaire, Coanza, thefe from the Lake Cbaamay, the Euphrates, Tanais, Petzora, [Maia] Tobol, and 1rtijcb in Siberia, St Efprit in Africa, Amana in the American Caftile, Magdalen, F̛ulian in Cbica, St Faques in Peru, the Rbine, Elbe, Maes, Boryftbenes, and Totonteac in New-Britain.

WE fhall here only trace the Courfe of ten of the largeft Rivers, leaving the more accurate Explication of them and others to fpecial Geography.

THE Nile, Niger, and Ganges, run almoft in a ftrait Courfe, the reft have many and large Curvatures.

1. THE Nile has it's Fountain in the Lake Zaire, in fix Degrees of South Latitude, and it's
(b) The Danube is faid to Miles in a frait Line, from perform a Courfe ofabove 1500 it's Rife to it's Fall.

Сн ap. 16. of Univerfal Geography.
Mouth in thirty one Degrees of North. It flows from South to North, and is in fome Places very broad; but in others narrow, and hath two great Cataracts. The length of it's Courfe is about fix hundred and thirty German Miles, or Two thoufand five hundred and twenty Italian; which we may reckon to be Three thoufand for it's Curvatures. It overflows every Year.
2. THE Niger (i), a River in Africa, (fometimes called Senegal) arifes from a Lake of the fame Name, in 5 Degr. of North Latitude. Some have formerly thought it to proceed from the Nile by a fubterraneous Paffage, becaufe it annually overflows at the fame Time with the Nile. One of it's Mouths is in 1 I Degr. of Latitude, but the furtheft is 15 Degr. diftant from the Equator. It flows from Eaft to Weft, and in one Place hides itfelf under Ground, and again emerges. It's Courfe is about 600 German Miles, but lefs if you neglect it's greateft Curvatures, and more if you include them.
3. T H E Ganges, in A fia, has it's remote, and not well known, Fountain a great way up in Tartary; fome place it in 35 Degr. of North Latitude, and others further North. It has it's Mouth in the
(i) De 'IJle in his Maps makes the River Niger to lofe it's name at the Lake de Guarde, and from thence to the Sea which in a ftrait Line is 700 Britibs Miles, is called Seregal; and makes the River Gambia to have no Communication with the Niger; but we have no fufficient Proof that there is any fuch River as the Niger: But Mr Snow, late Governour of Games Fort on Gambia River, informs me, that the Senegal hath not folong Courfe asit is reprefented
in thofe Maps; and that it is a barr'd River, and capable of admitting nothing larger than Barks up to the Frencb Settlements, above which, only flatbottom'd Boatscan float fo high as Gallum: Whereas the Gambia is navigable forShips of any Burthen about 50 Leagues above the Englifo Settlements, and for Veffels of 100 Ton up to Barraconda, and fomething higher, (for fo far the Tide prevails) and is near 150 Leagues above fames Fort. Tempieman's Survey. A a 2 Latitude South. It's Courfe is about 300 German Miles, and every Year it overflows it's Banks.
4. THE Oby, a great and every where broad River in Afra, has it's Fountain in the Lake Kan Kifan, among the Mountains of Tartary, in the Latitude of forty eight Degrees North. It has it's Mouth in fixty nine Degrees of Latitude, and runs a Courfe of about four hundred German Miles, without it's Curvatures. It divides itfelf in Siberia, into two Branches, or rather lends forth an Arm which makes a Curvature, and returns to it again, and fo forms an Ifland, in which there is a City built by the Mufcovites and Siberians, called Forgoet.
5. T H E fenifa, a River in Afia, hitherto unknown to our Geographers, but taken Notice of by the Mufcovites. It is faid to be much greater than the Oby, from which it is diftant eaftward, about ten Week's Journey, towards Tartary. There is a Range of Mountains runs for a great Way along it's eaftern Banks; and the weftern Shore is inhabited by the [Ton-Guifins]. It overflows the weftern Shore feventy German Miles every Year in the Spring, when the Inhabitants are forced to betake themfelves, with their Cattle and Tents, into the Mountains on the eaftern Shore. Where it begins and ends is not known, but it is thought to run as long a Courfe as the Oby.
6. [THE Maia or Lena] is far diftant from the Fenifa eaftward. The eaftern Branches are faid to proceed from the Borders of Cbina, and the Kingdom of Catbaia; if there be fuch a Place. It's Fountain and Mouth are unknown; and it is not reckoned one of the largeft fort of Rivers; only we are willing to mention it here, becaufe it has not been taken notice of by any Geographer, no more than the $\mathfrak{F e n i f a}$ and $V_{r i j}(b$.
7. T HE River of the Amazons, (or Rio de Orellana from Francicco Orelli) in America, is thought to be one of the greateft Rivers upon Earth. It's Fountain is in the Province of Quito in the Kingdom of Peru, near the Equator, and it's Mouth, being 15 Leagues broad, is in 2 Degr. of South Latitude. It is faid to run a Courfe of 1500 Spani/b Leagues, by reafon of it's great number of Windings, tho' it extends not above 700 in a ftrait Line. Some confound this with, or will have it to be, a Branch of the Miary. It is in fome Places four or five Leagues broad, but it receives it's Water not fo much from Fountains, as from the Rains that fall upon the Mountains of Peru ; and therefore is nothing nigh fo broad in the dry Seafons. This makes Travellers difagree in their Defcriptions of it.
8. T HE River of Plate, Argyropotamus, or Rio de la Plata, in Brafll, hath it's Fountain in the Lake Xarayes, and receives a Branch from about Potofi, and it's Mouth in 37 Degr. of South Latitude, which is faid to be twenty Leagues broad; but when it overflows, it has a great many Mouths, which are accounted but as one; for at other times it hath not much Water in it. The Inhabitants call it Paranaguafa, i. e. The River like a Sea, as fome obferve.
9. THE Omarânan is likewife a River of Brafil, flowing thro' a long Tract from the Mountains of Peru. Thefe three great Rivers of Brafil, viz. the Orellana, the Rio de la Plata, and the Omaránan, meet in certain mediterranean Parts of Brafil, fo as to form Lakes, from which they again rife feparate.
10. THE River of St Laurence flows between Canada and Nero-Holland, in Nortb America, and hath it's Fountain in the Lake [Fronlenac or] Iro-

PROPOSITION XXVIII.

There are Wbirlpools and deep Pits found in fome Rivers.

THUS in the River Soame in Picardy, between Amiens and Albeville, there is a blind Wkirlpool, into which the Water rufhes with fuch Violence, that it's clafhing may be heard feveral Miles off. There are many others of this kind.
PROPOSITION XXIX.

River Water is ligbter than Sca-Water.
THE Reafon is, becaufe Sea Water hath much Salt in it. From whence it happens, that fome things fink to the bottom in Rivers that floated upon the Sea; as very often heavy loaded Veffels, which were born up at Sea, fink in the Harbour. However, the Proportion between them is various, and they both differ in Weight in divers Places. We commonly fay, they are as 46 to 45 , i.e. 46 meafured Ounces of River Water equiponderate 45 of Sea Water.

C H A P. XVII.

Of Mineral Waters, bot Batbs, and Spaws.

5INCE there are feveral Species of liquid - Bodies, or Waters, whofe peculiar Properties feem furprizing, it has given Occafion to Geographers to treat thereof; but all of them hitherto, except a bare Recital of their Names, and a fhort Account of fome of the moft extraordinary Fountains, have added nothing to give us an Infight into their Caufe. But we fhall here treat of them more fully, and explain their Caujes, and alfo fet them in a clearer Light.

PROPOSITION J.

No Water is pure and elementary; but contains otber Particles mixed with it, fuch as are found in terreftrial Bodies; and thefe are not only earthy, but alfo of various otber kinds, as Oil, Spirits, $\xi^{3} c$. But that is called Mineral Water which contains fo many of thefe Particles different from the Nature of Water itfelf, that from them it acquires fuch remarkable Properties, as affect our Senjes and makes us take notice of it.

THE Truth of this Propofition is apparent from Experience, and is proved as well from the different Taftes of the Waters as from Diftillation; and all Naturalifts agree that there is no fuch thing in Nature as pure or fimple Water, or any other Element feparated from others, becaufe of the conftant and various Agitation of the Particles of Bodies. But in mineral Waters (that we may come clofer to our Subject) the caufe of this Mixture is their receiving the fpirituous Particles of heterogeneous Bodjes; for Rain and the very Air itfelf that covers the Water, is impregnated with many different forts of Particles.

ALL Waters therefore have a Mixture of Particles of another Nature, tho' all have not the fame Quantity of them ; and tho' there flow into the Rbine, the Danube, and the Elbe, and into all great Rivers, feveral Rivulets impregnated with mineral Particles in fuch Quantities as to affect the Senfes; yet becaufe, befides thefe, there are many other Brooks that flow into the fame Rivers which are not impregnated with a fenfible Quantity of heterogeneous Particles; and becaufe moft of their Water proceeds from Rain and Dew, therefore thefe heterogeneous Particles are not eafily difcovered in fuch great Rivers, tho' they are received by them; but require to be feparated by Art, if we would know their Tafte and Qualities. We therefore call that mineral Water which hath fome remarkable Property more than what is obferved in common Water, or hath fo large a Mixture of heterogeneous Particles as fenfibly to alter it's Tafte.

PROPOSITION II.

Mineral Waters are of tbree kinds.

S OME are corporeal, (we want a better Word for it) others fpirituous, and the reft both corporeal and fpirituous. Thofe we call corporeal mineral Waters do contain fixed and folid Particles of Minerals and Foffils, which can be feparated from the Water, and feen with the naked Eye; and fuch as thefe are of two forts : Some carry large Particles of Minerals and Foffils, which may be perceived with little or no trouble in the Water itfelf; nor are they properly fpeaking mixed with the Water: Such as thefe we treated of in the foregoing Chapter, and have in them Grains of Gold, Silver, $\xi^{\circ} c$. and therefore are called auriferous, argentiferous, $E^{2} c$. But fuch are not properly called mineral Waters, becaufe they have not thefe Particles mixed with them, but feparate; neither do they receive any Property or Quality from them: yet becaufe Men admire fuch Rivers and their Explication hath a great Affinity with the Defcription of mineral Waters properly fo called, we thought fit to mention them under the fame Head; to which may be added bituminous Fountains, $\mathfrak{E}^{2} c$.

BUT corporeal mineral Waters are more properly fuch as indeed contain folid Particles of Foffils, but fo fmall and minute that they are entirely mixed, and cannot quickly be diftinguifhed by the Sight, unlefs they are made to fubfide by Art, or a long fpace of Time; or by Concretion are brought to a vifible Mafs, fuch as Salt and fulphureous Fountains, $\Xi_{c} c$. and chymical Waters in which Metals are diffolved.

SPIRITUOUS Waters are thofe that contain only a volatile Spirit, fuch as is found in Minerals; but have no fixed Particles in them; and therefore their Compofition can never be made vifible.
W E call thofe Waters both corporeal and fpirituous, which contain not only fixed and folid Particles of Minerals, but alfo volatile and fpirituous: Of all which we fhall give Examples in the following Propofitions.

PROPOSITION III.

To explain bow mineral Waters are generated.

1. IF the Water be carried under Ground with a rapid Courfe among metalline and mineral Earth, which is eafily loofened, it is evident that it wafhes Particles from it, and may carry along with it Grains of thefe Minerals; and this is the generation of there corporeal mineral Waters that hold Grains in them.
2. IF the Minerals are imperfect and not fo clofely joined, as Vitriol, Sulphur, \mathcal{E}^{2} c. or even Salt, which of their own Nature eafily mix with Water; and if a Rivulet, or Gut of Water, runs thro' Beds or Mines of fuch Minerals, or be ftrained thro' them (without a Chanel or Duct in fuch a Manner as we explained in Propofition 5. of the preceding Chapter) the Water when it breaks out at the Fountain will have fmall Particles of thefe Minerals mixed with it, and will be corporeal mineral Water, of a fubtile Compofition, according to the fmallnefs of the Atoms. Now whether the Water can in like manner diffolve or unite with itfelf the Particles of Metals, is to be queftioned, becaufe they are hard and folid, and therefore are not eafily blended with Water. I acknowledge acknowledge this may be done, but not with fimple or common Water, but by a vitriolic and falt fpirituous Water, like the Aqua Fortis of the Chymifts ; for as Aqua Fortis diffolves Metals into Atoms, and eafily unites them with itfelf, fo that they do not fubfide at the Bottom, unlefs they be feparated by Art: in like manner when fuch Water runs thro' a metallic Earth, it may diffolve the metalline Particles and unite them with itfelf; and thus are the corporeal mineral Waters of the fecond Sort, accounted for and explained.
3. BEFORE Metals are formed in the Bowels of the Earth, Steams and Vapours are condenfed about the extant Corners of the Rocks, to which they ftick faft; being at firft but of a foft Subftance, though they are afterwards hardened by degrees; if therefore the Water fhould run or gleet thro' the Places where fuch Vapours are in Commotion, it is impregnated with them ; and thus fpirituous mineral, and metalline, Waters are produced. Imperfect Minerals alfo make mineral Waters of their own Nature, after another Method; viz. when, being heated by a fubterraneous, or their own proper, heat, they fend forth Spirits and Vapours, as Sulphur, Vitriol, Salt, Coal, $E^{3} c$. And fuch Fumes and Exhalations are always ftirred up where there are fuch Minerals; among which the permeating Water is impregnated with that Spirit. Some think thefe fpirituous Waters may be generated by being only carried thro' a metallic Earth, or by having their Receptacles in it, or in their Mines; but it is found to the contrary by Experience, that Water receives no Quality from Metals and Minerals, tho' they fhould be immerfed in it a great many Years. Therefore, rejecting this Opinion, it is mof reafonable to fuppofe, that thefe Waters receive a certain Spirit, from the Seeds of Metals, or firft Principles, Vitriol, Salt, $E^{\circ} c$. by the help of which a Spirit is extracted from hard Metals; but I do not lay fo great Strefs upon this latter caufe; for a Queftion will arife again about the Generation of this fpirituous, mineral, vitriolic, and falt Water.
FROM thefe together it appears, how mineral Waters, both corporeal and fipirituous, are generated.
PROPOSITION IV.

There are innumerable Kinds of mineralWaters, according to the Variety and Diverfity of the Particles, they receive from different Minerals.

WE have fhewed and explained in the former Propofition, how mineral Waters receive thefe Particles (from which their extraordinary Qualities arife) from Minerals, or Foffils. Now becaure there are divers Kinds of Minerals, it hence follows, that mineral Waters are various, and almoft infinitely different in their Qualities; not confifting of one kind of Water impregnated with only one fort of Mineral, but of various Kinds, mixed with various Sorts. Wherefore mineral Waters are either fimple or mixed ; and the Mixed have two, three, four, or more, forts of Foffils in them.
HENCE are, I. Metallic Waters, as of Gold, Silver, Copper, Tin, Lead, Iron, $\mathcal{E}^{\circ} c$.
2. SALT Waters, as of sommon Salt, Nitre, Alum, Vitriol, ©c.
3. BIT UMINO US Waters, fulphureous, antimonial, as of Coal, Ambergris, छc.
4. WATERS proceeding from various kinds of Earth and Stones, viz. Limeftone Waters, (which receive receive Particles of Lime-Stones) Chalk, Oker, Cinnabar, Marble, Alabafter, EJc.
5. MERCURIAL Waters, \mathcal{E}° c.

A LL thefe kinds of Waters are to be underftood three Ways, as was faid in the fecond Propofition (as all other mineral Waters are), viz. 1. Some of them are corporeal, either fenfibly fo, or by a refined and fubtile Commixture. 2. Others are fpirituous. 3. Others are both corporeal and fpirituous. Thefe Differences may be applied to the feveral Kinds of mineral Waters. For Example: There are Golden Waters which are, 1. Corporeal, that carry Grains of Gold, of fuch Magnitude, that with fmall Trouble they are difcernable, by reafon of their grofs or courfe Mixture. 2. Corporeal, that carry very minute Particles of Gold, well mixed with them; and tho the fmalleft Particles of Gold, do of their own Nature fink to the bottom in Water, yet that there are fuch, appears from the Aqua Regia of the Chymifts, in which Gold is diffolved into Atoms; but this Aqua Regia is not a Simple Water, neither does any Water carry Atoms of Gold in it, unlefs it be before impregnated with other mineral Particles. 3. Spirituous golden Waters, that have ingendered a Spirit and Vapour in the Earth from which Gold is produced. 4. Golden Watersthat are both corporeal and fpirituous, viz. that have both Atoms of Gold, and the Spirit that produces it.

THUS we are to apply this four-fold Variety to all forts of mineral Waters, whether fimple or mix'd (from whence innumerable Species are produced ; for either the Bodies of Foffils, or their Spirits, or the Body of one Foffil with the Spirit of another, are mixed or ingendered in the Water): fo Leaden Waters are of four kinds, viz. I Vifibly corporeal. 2. Corporeal by a fubtile Mixture. 3. Tinctured by the fpirit of Lead. 4. Impregnated both mercurial Waters, \mathcal{E}^{c}. and more efpecially to falt, vitriolic, and fulphureous Waters, becaufe in thefe, Nature itfelf difplays a four-fold Variety; tho' it is to be doubted, whether there be corporeal Particles of a fubtile Grain in metallineWaters. Spirituous metallic Waters are alfo very rare ; but the Water of Salt, Sulphur, $E^{\circ} c$. both corporeal and fpirituous is very common, becaufe thefe Foffils are found in more Places of the Earth, and in greater Plenty, and their Particles are alfo fooner dafhed to Atoms, and diffolved by the Water; befide they frequently emit Steams and Vapours.

LET us explain this four-fold Variety of Participation by one Example of Gold.
I. I N the preceding Chapter, Propofition 16 , we enumerated thofe Rivers that carry Grains of Gold, and with this Treafure glad the Hearts of the Natives upon their Banks; as in the County of $\tau_{y r o l}$, and the neighbouring Places, there are feveral fuch; and as we faid before, the Rbine, the Elbe, the Danube, and feveral other great Rivers, carry Grains of Gold in feveral Places (and alfo other Metals and Minerals) which they receive from auriferous Rivulets. The Rbine carries Grains' of Gold, mixed with Clay and Sand, in many Places, but efpecially at thefe, viz. 1. Near Coire, in the Grijons Country. 2. At Mayenfield. 3. At Eglifau. 4. At Sokinge. 5. At the Town of Augft, not far from Bafil. 6. At Newburg. 7. At Seltz. 8. At Worms. 9. At Mentz. 10. At Bacherach, 11. At Bon, EJc. The auriferous Rivulets, which the Rbine receives, the Reader may fee in Tburnbeuferus; and alfo thofe that run into the Danube, and Elbe. Small Grains of Gold are found in the Elbe in thefe Places: 1. At Lotomeritz in Bobemia. 2. At Purn. 3. At Drefden in Meijen. 4. At Torgare.

Chap. 17. of Univerfal Geography. 367

5. At Magdenburg. 6. At Lavenburgb Tower, five Miles from Hamburg. Several other auriferous Rivers are given an Account of in the forecited Book of Tburnbeuferus; and fuch as carry other Metals and Minerals. And thefe are auriferous corporeal Waters, of the firt kind, carrying vifible Grains, which are not fo properly called Mineral or Golden Waters, becaufe the Gold Grains are not mixed with the Water, but only carried in it by it's rapid Motion ; the Water itfelf being uncompounded with it.
6. CORPOREAL Golden Waters of fine Mixture, whofe Atoms are united with the Atoms of Gold, like the Aqua Regia of the Chymifts, which diffolves Gold, and unites it by Atoms to itfelf. For fince it is poffible that there may be in Nature fuch Water as this of the Chymifts, which may run thro' Golden Earth, or Gold Mines, it is reafonable to fuppofe, that it eats out Particles and diffolves them into Atoms, and unites them to itfelf; and from this Caufe proceed thofe (or fuch like) Golden Rivulets as are defcribed by Tburnbeuferus, in his Account of the Danube, Rbine, $\xi^{\circ} c$.
7. SPIRITUOUS Golden Waters are but very few, fome of which perhaps are enumerated among the reft by Tburnbeuferus; but thefe are not fo much known or regarded, becaufe Golden Earth and Gold Mines are very fcarce; befides where there are fuch Mines, there is fuch a Mixture of other Minerals, that they are not perceptible. Neverthelefs there are fome Rivulets in the high Alps of Bobemia, that are faid to participate of thefe Golden Spirits, as in the Fiecbtelberg Mountains in Silefia. The Hot Batbs alfo in the Bifhopric of Coire, are believed to be impregnated with this kind of Spirit, yet becaufe of the Mixture of other Mine- lefs perceptible.
8. GOLDEN Waters that carry both the Atoms, and Spirit of Gold, are fome of thofe Rivulets mentioned by the above-named TburnbeuSerus.

LET us alfo give an example of falt Waters.

1. CORPOREAL faltWater, which carry grofs and undigefted Particles of Salt, are found in many Places, and fufficiently known; as Fountains, whofe Waters produce Salt; and Sea-Water from which Salt is extracted by boiling.
2. SUBTLE corporeal falt Waters, which contain Salt diffolved into the minuteft Atoms, are fuch as are very falt, and yet very clear, as many falt Fountains are, and Sea-Water that is thin and fine ; tho' there is a great Difference in this fubtile Mixture. Hereto may be referred the Urine of all Animals.
3. SP I R I T U OU S falt Waters, which do not contain the Particles of Salt, but only the Spirit of it, are of fuch a Nature, that if feveral Tuns be ever fo much boiled, they will not yield any Salt. There are a great many of thefe in Germany, and other Places, but they are feldom without Mixture.
4. C OR P OR E A L and fpirituous faltWaters, which contain the Particles and Spirit of Salt. Almoft all corporeal Waters have fome fmall Portion of faline Spirits in them, but few of them any Quantity. Thus the Fountains about the City Saltzinge, near the Rbine, are falter than other falt Springs, and yet yield lefs Salt, becaufe their fharp and brackifh Tafte is heightened by a Spirit or volatile Salt, which fies away in the boiling.

HENCE it appears how this four-fold Variety of Participation is to be applied to the feve-

С H Ap. 17. of Univerfal Geggraphy. 369

 ral kinds of mineral Waters, viz. to vitriolic, Alum, and Lead Waters, $\mathfrak{E}^{2} c$.
PROPOSITION V.

To enumerate the mof remarkable Varieties of mineral Waters.

IN the foregoing Propofitions, we have explained the Kinds and Differences of mineral Waters, taken from their Nature, which confift in having mineral Particles in them, which they carry or with which they are impregnated; but becaufe thefe Varieties are not fo perceptible to the Senfes, and there are feveral Mixtures of Minerals that caufe various, and almoft unaccountable, Properties in the Waters, therefore they are not fo eafily known and diftinguifhed by the Vulgar ; for Waters (and other Bodies) become famous among Mankind, and receive their Names from their manifeft Qualities which ftrike and affect the Senfes, whofe Caufe and Explication is to be deduced from their Compofition and Participation. There are therefore ten Species of Waters, or Liquids, that flow out of the Ground, which are commor ly taken Notice of by the Vulgar. 1. Acid Waters. 2. Bitter. 3. Hot. 4. Very cold. 5. Fat and oily. 6. Poifonous or deadly. 7. Coloured. 8. Boiling. 9. Waters that harden Bodies, change their Colour, or otherwife alter them. 10. Saline. 11. To thefe may be added, fuch as are invefted with other uncommon Properties. All kinds of Waters defcribed by Authors, may be referred to one or other of thefe Heads. We fhall here briefly explain their Generation and Differences; and give fome Examples.

PROPOSITION VI.

To explain the Origin, or Compofition, of acid Waters, their Difference and real Species.

THESE four Waters, called by the Germans Saur-Brunnen, are celebrated in moft Countries. They proceed from a Mixture of the Spirit of Vitriol, Salt, and Alum ; which Minerals are found partly fimple, and partly mixed, with others more or lefs, in the Bowels of the Earth, efpecially with Steel and Iron. We prove this to be the true Caufe of Acidula. 1. Becaufe almoft wherever thefe acid Fountains break out, there are found Mines of Vitriol, Salt, and Sulphur. 2. Becaufe the Spirits of Vitriol and Salt are acid, and alfo the Spirit of Sulphur, as appears from Chymiftry, 3. Becaufe no acid Body can be drawn from thefe Acidula, but only a Spirit which is no way unlike the Spirit of Vitriol, Salt, \mathcal{E}^{c}.

THERE is plenty of Acidula in moft Countries, efpecially thofe that abound in Mines. In Germany alone, their Number amounts to almoft one thoufand. Their Caufe is an acid Spirit which is found in moft Bodies, and in all Herbs and Fruits.

T HE difference of Acidule is remarkable: Some are fo acid, that Men ufe them inftead of Vinegar ; fuch a Fountain as this is found in the Province of Nota, in Sicily; and another of are markable fournefs at Elbogen in Germany. Other Fountains are called vinous becaufe they come near the grateful Relifh of Wine; of which kind there is a famous one at Scbrwalbach, in the County of Calzenellebogen in Germany (a). There is a Spring near St Baldomar,
(a) Such like Cbalybeates or I Acidula or Sour Waters; for Spaws are not fo properly called |they do not contain any rough, vitriolic

Снар. 17. of Univerfal Geography. 371 domar, in the Province of Lionnois in France, called la Fontaine forte, which fupplies the want of Wine; for if one fourth Part of it be mixed with Wine, it will want nothing of it's right Tafte and Relifh ; if it be poured on Flower, it will immediately ferment; they can boil no Meat in it, becaufe through the Subtility of it's Spirit, it foon evaporates; it is fo exraordinary robolefome, that the Inbabitants thereabouts Seldom ftand in need of a Pbyfacian.

N OT far from the Town of Bazas in Guienne, there is fuch a Fountain, of a fharp vinous Tafte, whofe Waters, if they are mixed with a fixth Part of Wine only, will drink like neat Wine, without the leaft mixture of Water. Near Rome there is a fharp tafted Alum-Fountain, whofe Waters being mixed with Wine, make a very agreeable Liquor. There is a great Number of fuch Acidula in Higb Germany; fome Part of which flow into the Danube and fome into the Rbine. There are feveral of thefe in the fore-mentioned County of Catzenellebogen, in the Electorate of Triers, in Tyrol, in the Grifons
vitriolic, or acid Salts to make them tafte fharp or four, but rather leave a fweetifh Flavour or Farewel behind; and tho' at the firft thought one would afcribe a fharp or four Tafte to the Pyrmont, Spazv, or Tunbridge. Waters, yet if they be rightly confidered it is their fmart briskTafte that mifleads us to think them acid or truly four. Thas Cyder and foft Ale when bottled will give the like Pungency to the Tongue, and fuch an acute Affection to the Palate, when it is far from being four. Tbis is proved from feveral Experiments by Dr Slare. See more to this pur-
pore in a late Book entitled New Experiments and Obfervations upon Mineral Waters by Dr Sbaw. See alfo Philor. Tranf. No 137. Pag. 247. and $\mathrm{N}^{\circ} 35 \mathrm{t}$ Pag. 564.

The moft celebrated Spazos, Mineral, or MedicinalWaters in England, are at thefe Places; viz. at Bath, and Tunbridge ; at Farington it Dorfetbire; at 1flingtun, Hampfed, and Parcras in Middlefex; at Scarborough, Harrowgate and Cockgrave in Yorkßire; St Winifred's Well in Flintßire; at Dulvoicb in Surry; at Butterby in the Bifhoprick of Durbain, \&c.

Country, in Bavaria; and a famous one called Heilburn, near Anderna. Near the Village Valentiola, in the Territories of Toledo in Spain, there are Fountains that are acid, and have a vinous Tafte, near the Bottom, but are fweet at the Surface; which Baccius thinks proceeds from the fubfiding of the acid and nitrous Particles; but I believe (if the Relation be true) that it proceeds rather from a fubtile Spirit, which by coming to the Surface, quickly expires.

OTHER acid Fountains are aftringent, and contract the Palate, which is a Sign of a Mixture of the Particles of Iron, or of Vitriol and Alum, $\mathcal{E}^{\circ} c$.

THE Water of thefe Fountains, is obferved to be not fo four in cloudy and rainy Weather, which is a fign that condenfed Air is mixed with it. Alfo if it be expofed to the Sun, or ftand for fome Hours in an open Veffel, or be carried in the cold from one Place to another in Bottles not well corked, it lofes it's Acidity ; which is a certain fign that this Acidity proceeds from a fubtile Spirit,

T HEY have alfo the very Atoms of Vitriol, Alum, Iron, Salt, Ink, Ξ^{3} c. and of Clay and Gravel, $E^{2} c$. as appears from the Matter that fticks to the Canals thro' which they flow.

THE Studious may collect a great many Examples from Authors. There are no lefs than two hundred acid Fountains or Rivulets, that flow into the Rbine; but becaufe of the Subtility of their Spirits, the Rbine does not tafte acid in the leaft.

IF any fhould enquire, Why there are no acid Fountains in the northern Countries? I fuppofe the Caufe is owing to the want of fubterraneous Heat, and to the great Denfity of the Earth; and for this fame Caufe there is little or no Gold found in thofe Countries.

PRO.

PROPOSITION VII.

To explain the Caufe of bot Batbs, and to enumerate the moft famous ones.

THERE is a Fountain in Iceland, which is thought to be hotter than any of the reft, fo that it's Waters differ not from thofe that are heated to the higheft Degree by Fire (b) ; but Caronius writes, that in Japan there is a Spring fo hot, that no Water can be brought to the fame Degree of Heat, by the moft vehement Fire; it alfo retains it's Heat three times longer that our common Water heated. It flows not conftantly, but twice a Day for an Hour, with a great Force of Spirits, and makes a Lake, which (as another Author tells us) is called by the Inhabitants Singacko, i. e. Hell.

NEX T after thefe, the Baths at Baden in Switzerland are famous for their Heat. To thefe fucceed the Aponenfian Baths in Italy. There are a great Number of common ones in High-Germany and other Places (c)." In Scotland there is a Lake called

which comes out of a Rock in a frefh Current, near to a fine Rivulet, of good cool Water, but is fo hot that it foon boils Eggs, Crawfin, Chickens, \&o c. The Baths at Baden in Aufria are tolerab'y warm, and tinge Metals with other Colours. - Thofe at the Town of Baib in - Somerfet/bire are not fo very - hot (even the hotteft of them) - as to harden an Egg; yet there - is a Spring in the King's Bath - Io hot that it is farce fuffer--dble, fo that they are fain to - turn much of it away, for fear ' ' of inflaming the Bath. The Bb 3

Queen's that Name; which tho they be neither of them hot yet they never freeze, but ftill fmoke in froEty Weather.
THE Caufe and Generation of hot Baths is, 1. A Mixture of fulphureous Particles which are gleaned by the Water as it is carried thro' the fubterraneous Paffages, or rather as it gleets thro' the Sulphur Mines to the Receptacles about the Fountains, 2. Fumes, Vapours, and Exhalations in the Bowels of the Earth, where there is pure or impure Sulphur, Foffil-Coals, Amber, Ecc. For thefe

- Queen's Batb is not fo hot, ' having no Springs of it'sown,
6 but receives it's Water from
'the Kivg's. The Crofs-Batb
- is fomething colder than the ' others, and eats out Silver ex-
- ceedingly; a Shilling in a
- Week's time has been fo eaten
- by it that it might be wound
' about one's Finger. In Sum-
' mer they purge up a green
- fcum on the Top, and in Win-
- ter leave a Yellow one on the
© Walls. The Walls that keep
' in the hot Springs are very
- deep fet, and large ; ten Foot
- thick, and fourteen deep from,

6 the Level of the Street. The

- Cement of the Wall is yellow
- Clay, Lime, and beatenBricks.
- In the Year 1659, the Hot
- Bath (one particularly fo cal
- led of equal Heat with the ${ }_{6}$ King's Bath) was much im'paired with the breaking c out of a Spring which the - Workmen at laft found, and-- reftored. In digging they
- came to a firm Foundation of
- factitious Matter which had
- Holes in it like a Pumicefone,
's thro' which the Water plaid ;:
- fo that it is likely the Springs - are brought thither by Art:
- Whence probably was the Ne-
- cromancy which the People of
- antient times believed, and re-
- ported to have contrived, and
- made there Baths ; as in a very
- antient Manufcript Chronicle
- I find there Words: Wben Lud
- Hidibras was dead, Bladud a
- great Nigromancer was made
- King ; he made the Wonder
- of the Hot Bath by his Nigro-
- mancy, and he reigned twenty
- one Years, and after he died, - and lies at the Nero Troy. And - in another old Chronicle 'tis f faid: Tbat King Bladud Sent - for tbe Necromancers to A. - thens to effect this great BufiS. ne/s; who, 'tis likely were © no other than cunning Arti-- ficers well skilled in Arcbitec' ture and Mecbanics.' Tbis from Mr Fofepb Glanvil's Defoription of Bath. in Pbilofopb. Tranf. No 49. Dr Brown fays, the natural Baths at Buda are the nobleft in Europe, not only for their variety of hot fprings but alfo for the Magnificence of their Buildings.

Bodies conftantly emit hot Smoke, which warms the Water as it paffes fuch Places (d). Neverthelefs in moft Baths there is a Mixture of the Particles of Alum, Iron, or Nitre, which give them an aftringent and tartifh Tafte. Moft Baths that we know of, flow without ceafing, except the famous Pepper-Baths not far from Coire in the Grijons Country in Germany, whofe Waters contain, befide Sulphur, fome Gold, and not a little Nitre. They begin to fpring yearly about the third of May, and ceafe to flow about the fourteenth of September. The moft celebrated Baths in Germany are, the leaden ones in Lourain; the Emfenbades above Conftance; thofe near Geberfweil in Alfatia; thofe in the Marquifate of Baden; thofe in the Dukedom of Wirtemberg, called Wildbad; the Cellenfian Baths; the Blafianian Baths, near Tubingen, $\mathrm{E}^{\circ} \mathrm{c}$. There are many in Japan and the Indian Inlands: and fome in the Azores fo hot that Eggs may be boiled hard in them.
PROPOSITION VIII.

To explain the Cause and Generatoin of oily and fat Liquids that flow out of the Earth, and to enumerate the Places in wibich the cbief of them are found.

SOME Fountains pour out a bituminous $\mathrm{Li}-$ quor, others a fat Water, or Water in which Drops of Oil fwim about. Two Miles from E -
(d) They beft account for the Heat of there Fountains, who fuppofe, that two Streams having run thro', and imbibed certain Sorts of different Minerals, meet at laft, and mingle their Liquors; from
which Commixture arifes a great Fermentation that caufes Heat, as we fee in Vitricl and Tartar, which when mingled caufe an intenfe Heat and Ebullition. See the laft mantioned Philor. Tranfact. the Superficies of which fwim Drops of black Oil, which the Inhabitants ufe o foften their Skins, and to remove Scabbinefs (e). Among the Antients a River in Cilicia called Liparis was famous, in which they that wafhed themfelves, were thereby anointed as if they had been in Oil; but I doubt whether there be any fuch River now. So likewife there was a Lake in Etbiopia which anointed thofe that fwam in it. In India alfo there was a Fountain which, in a clear Sky, fent out abundance of Oil. At Cartbage there was a Fountain upon which floated an Oil that fmelled like the Saw-duft of a Citron-Tree: this they made uie of to anoint their Cattle with. Vitruvius tells us, that there were Fountains in the Inand of Zant, and about Dyrrbacbium, now Durazzo, and Apollonia, that vomited out a great deal of Pitch with the Water. Near Babylon there was a vaftly
(e) Pliny faith, that the Salonian Fountain, and Andrian Spring flow with Oil and Wine. ' Polyclytus relates, that - near Soli a City of Cilicia - there was a Spring that fup - plied the Place of Oil. Theo-- pbra;ius fays, that there was - a Spring in Etbiopia which - had the iame Faculty ; that - the Water of the Spring Lycos - would burn by putting a Can6 dle to it ; and the fame is re-- ported of Ecbatara, Clarke upon Robault's Pbyy. Vol. 2. Pag. 201. Many fuch Fountains of Petroleum, and oily Subllances, are now to bê met with up and down; as at Pitchford in Sbrop. fbire; and in the Ifland of Zant, very plentifully; in the Valtaline, lubjest to the Grijons; at the Foot of Mount Zebia in the

Duchy of M dena; at Gabian in the Road from Montfellier to Beziers in Languedoc. The Inhabitants living near thefe fat oily Springs, take Care to gather and feparate the Bituminous fubflance from the Water; They gather it with Ladles, and putting it into a Barrel, feparate the Water from the Oil by letting out the firft at a Tap towards the Bottom of the Veffel. In the Ifland of Barbadoes there is a Rivulet, called Tugb River, which hath upon it's Surface in many Places a certain oily Subftance, which being carefully taken off, and kept a little Time, is fit to burn in Lamps like ordinary Oil. Near Cape Helene in Peru there are Fountains of Rofin (or fomething like it) Which flow in Abundance.
broad broad Lake, called Affbalites Limne, that had a liquid Bitumen fwimming upon it, with which Semiramis cemented the large Brick-Walls which furrounded Babylon. At this Day there is a Fountain near Degemfce, a Monaftery in Buvaria, whofe Surface is covered with Oil, which is daily carried away by the Natives. There are alfo great Lakes in Syria and Africa which fend forth Heaps of Bitumen. The Acidule at Scbwalbacb if they be kept quiet in a Veffel for fome Hours, there will be fmall Drops of Oil fwimming on the Top of them. A greater quantity of fuch Drops are found in a Fountain called Oilbrunn near the Village Lamperfcbloch not far from Hagenaw. And in moft Baths there are found bituminous Particles, after they have ftood to fettle for fome Time; as in the Petrolean Baths in the Kingdom of Naples.

THERE are alfo great Numbers of Fountains which do not produce Oil on their Surfaces, but pour out a meer fat or bituminous Liquor. Near Gerfbacb in the Valley called Leberftbal, there flows from an old exhaufted Mine a thick Oil or Bitumen which the Country People ufe inftead of Greafe to the Axle-Trees of their Wheels, but they are ignorant of it's fuperior Virtues; for Thernbeuferus tells us, that an excellent Balfam may be prepared from it. In the Inand Sumatra there is a Fountain which pours out a kind of liquid Petroleum: fome fay it is a kind of Balfam; there are faid to be alfo Fountains of Ambergris there. They find a bituminous Fountain in Peru near the Sea, which emits a fmall Rivulet into it, and is ufed by the Inhabitants inftead of Pitch; neither have they any other fort of Matter fo like it. Not far from Scbimacbian in Per δ ta, at the Foot of the high Mountain Barmacb, there are about thirty Fountains that fend out a Napbtba or bituminous Subftance; but they lie low, and frring with great Violence with wooden Steps for the Conveniency of defcending. They emit a ftrong fulphureous Spirit, which is of two Colours; in fome places red, and in o: thers white; the later is of a more pleafant Smell.
THE Caufe of thefe bituminous Fountains is a fulphureous and bituminous Matter melted in the Bowels of the Earth, and preffed upwards by a hot Spirit. Their Differences arife from the different fat Minerals that fupply them ; as Ambergris, Amber, the Oil of Petrol, Pitch, Napbtba, Bitumen, छ๘c.

PROPOSITION IX.

To explain the Origin of Waters that tafte bitter; and to enumerate the Places of the Eartb in wobich they are found.

ON the Shore of Cormandel in India there are feveral Springs and Wells whofe Waters are bitter tho' they fpring up among the Rocks. In Pontus, a Province of Afia minor, there is a fmall Rivulet at the Town of Callipade, called Exampean, whofe Water is bitter; this makes the River Hypanis alfo bitter, into which it flows. The Reader may collect feveral more Examples.

THEY come from an impure Sulphur, Bitumen, Nitre, Copperas, Copper; as Water by long ftanding in a Copper Veffel, acquires a bitter tafte. But I cannot credit what Molina delivers in his Defription of Gallicia, viz. that there is a Lake in Ireland whofe Waters are one half of the Day fweet, and the other half bitter.

T HE Lake Afpbaltites, which is alfo called the Dead Sea, in Palefine, hath bitter Waters, becaufe of an impure Bitumen mixed with them, fo that by right it belongs to the fat Waters in

Chap. 17. of Univerfal Geograpby. 37, the laft Propofition. It fends forth a naufeous ftinking Vapour. Every thing without Life is there drawn to the Bottom: but it fuffers no living Creature to fink; neither does it grow fweeter tho' it abforbs the whole River fordan that conftantly flows into it. It's Waters are poifonous by reafon of it's containing Arfenic (f).

PROPOSITION X.

To explain the Caufe of very cold Springs, and to enumerate the Places of the Earth in wowich they are cbiefly found.

NOT far from Vienne in the Province of Dauphiné in France there is a Fountain fo cold, that it fwells the Mouth of thofe that drink it; nor can any one endure his Hands in it. It is not diminifhed when Water is drawn out of it, nor augmented by pouring it in. On the Coaft of Abex in Etbiopia (formerly inhabited by the Troglodytes) there are extream cold Fountains, tho' the Sun be exceffive hot there. Four Miles from Gratz in Stiria, are Fountains boiling up in a low Place, fo cold that none can drink the Water running or drawn from thence. About a Mile from Culma there is a Fountain that pours out Water with a ftrong Spirit as if it were boiling, tho' it be very cold, which makes them call it the Mad-Water.
> (f) Our Countryman Mr Maundrel obferved this Lake narrowly upon the Spot; but could not perceive any Smoak or Vapour afcending above the Surface of the Water, as is defcribed in the Writings of Geographers. He alfo went into it,
and it bore his Body in fwim; ming with an uncommon Forces but as to the Report of a Man wading into it as high as his Navel, will be buoyed up by it, this he found not to be true. Salmon.

T HE Caufe of their Coldnefs is, I. A Mixture of Nitre and Alum, alfo of Mercury and Iron, $\mathcal{E}^{\circ} c$. 2. The great Depth from whence they fpring, fo that they want the Rays of the Sun, and the fulphureous Heat under Ground.

THERE are alfo Fountains that are cold and hot by turns. In Catalonia there is a falt Fountain and Lake, which are extream hot in the Winter and as cold in Summer. This is common to feveral others. I fuppofe the Caufe of it is, that the Pores of the Earth, being open in Summer, let out the fubterranean hot Spirit thro' them : which being fhut in during Winter, keep it as in a Furnace or Oven, to warm the Water. Thus fome Fountains are hotter in the Night than in the Day.
PROPOSITION XI.

To explain the Origin of thofe Waters that Seem to turn Bodies into other Species; and to enumerate the Places of the Earth in which tbey are found.

THERE are fome Waters which petrify Wood or turn it into hard Stone. A little above the City of Armagh in Ireland, there is a finall Lough, in which if a ftick of Wood be fixed, and continue for fome Months, the Part that is faft in the Mud becomes Iron, and that in the Water turns to a Whetfone, and that above Water continues to be Wood. This is reported by Giraldus and Maginus: but Brietius, by what authority I know not, fays that it is a Fable throughout (g).
(g) There is certainly no fuch Lougb as this in Ireland; their famous Lougb Neagb was formerly thought to have a petri-
fying quality ; but upon due examination it is found, that the faid quality is to be afcribed ta the Soil of the Ground adjacent

Сhap. 17. of Univerfal Geography. 38 r In the North Part of Ulfer (a Province in Ireland) there is a Fountain, in which if Wood be immerfed feven Years it will be petrified. There are Loches of Water in the Province of Beaufe in France, that petrify every thing thrown into them. At the Town of Sens in [Cbampagne] near
to the Lake, rather than to the Water of the Lake itfelf. There are \int nne Waters in Scotland that perrify: As in Glevely, at a Place called Acbigniglium, there is a Rivulet which fo turns Holly into a greenifh Stone, that they ordinarily make Moulds of it for cafting of Balls for Fuzees; and Tinkers that work in Brafs, make both their Moulds, and melting Pots of it , and Women their round W barls for fpinning. Alfo upon the north Side of the Firtb of Fortb there is a Cave, from the Top of which drops Water that in falling makes long Columns refembling the Pipes of a Church Organ, and fome of different Figures. See Pbilof. Tranf. abridged by Lozotborp. Vol. 2. Page 321, 325. - There is a

- River in Tbrace which if you - drink of it, will turn your
- Bowels into Stone, and cafes
- with Marble whatever is put
- into it. Concerning which Se-
- neca thus fpeaks in his Natural.
- 2uft. Book 3. Cbap. 20. the
- Mud of it is of that Nature that
- it glues Bodies together, and
- hardens them. As the Dult of
- Puteoli, if it touches the Wa-
- ter, it becomes Stone, fo on
* the contrary, this Water, if it

6 touches any thing folid, tticks,

- and cleaves to it. Hence it is

6 that Things thrown into this

- Lake are afterwards taken out

6 and converted into Stones.

- The fame Thing happens in
- fome Parts of Italy, if you put
- in a Rod or a green Leaf, in a
- few Days after, you take out a
- Stone. And Pliny Book 2.
- Cbap. 103. fays,' In the
- Cicous River, and in the Lake
- of Velinus, in the Country of
- Marca di Ancona, Wood caft
- in is covered over with a fony
- Bark, and alfo in Surizs a
- River in Colcbis ; fo that a
- hard Bark commonly covers
' over the Stone ftill. So like-
- wife in the River Silarius, be-
- yond Sarrentum, not only Rods
' put in, butalfo Leavesturnin' to Stone; the Water is other-- wife very wholefome to drink. Clarke upon Robault's Pby. Vol. 2. Pag. 202. In the Inand of Haynan near Cbina there is a Water of fuch a ftrange quality that it petrifies fome fort of Fihhes when they unfortunately chance to enter into it. Among the 2uickflver Mines in Guianavilica in Peru, is a Fountain of hot Water whofe Current having run a confiderable way, turns at laft into a foft kind of Rock, which being eafily cut, and yet very lafting, is ufually employed for building of Houfes thereabouts. There are feveral petrifying, and incruftating Waters in Virginia, \&c.
a Lake,
a Lake, there flows a petrifying Fountain. Vitruvius tells us that there is a broad Lake, between Mazaca and Tuana in Cappadocia, which changes a Reed or a ftick of Wood, in one Day, into Stone. There is a Fountain near Cbarles's Baths in Bobemia, in which if Wood lie long it is turned into Stone. Such as thefe are found in divers other Places. Other Waters are thought to change Iron into Copper, which in fact they do not, only becaufe thete Waters carry the Spirit and Particles of Vitriol and Copper, they eat out, and by little and little diffolve, the Particles of Copper as they flow along with the Water.

THE Caufe why thefe Waters turn Wood into Stone is, 1. Some do not change the Wood itfelf into Stone; but the earthy, ftoney, faline Particles contained in the Water ftick to the Wood, and only incruftate it with a ftony Cruft. 2. Others do not change the Wood into Stone, but give it a bardnefs equal to that of Stone. 3. If any Water have a true petrifying Quality, I fuppofe it may be accounted for thus (b). The chief

Difference
(b) ' [In the Summer of the - year 1729, I happened to fee 6 the famous petrifying Spring

- calledDropping Wellat Knaref-
- borougb in Yorkfoire. It arifes
- fome yards from the Top of a
- Break of hard marly Earth (I
- cannot call it a Rock, it being
- feveral Degrees more foft, and crumbling than our common - Rygate Stone) made, I (uppofe, - fome time or other by the Ri-- ver Nild which flows very - near to it. The Current, - which is but fmall, runs to - the Breakwards, where be-- ing interrupted with Sticks,
- Twigs, and Mofs laid for that
- Purpofe on the Edge of it, it
- is diffufed all over the Stone,
- and partly gleets down the
- fides, and partly falls perpen-
- dicularly in Drops upon fome
- Pebbles, where there is a
- fmall.Matter of Water below.
- This Well doth by no means
- petrify Wood, Mols, छ̊c. put
- into it, butonly incrufts them
- all over with a fony Cruft ;
- Neither hath it this incrufling
- quality (at the Spring Head)
- before it comes to the Break;
- and runs down, or drop, from

6 the foft marly Stone. tween Wood and Stone is, that in the Wood there are as it were long Fibres in which it's Parts cohere, tho' not very clofe. But in Stone the Particles, being as it were Sands or Atoms, are not joined by any extended Fibres. If therefore it be the Nature of any Water to diffolve, and, as it were, grind the long fibrous Particles of Wood, that they do no more cohere after this Manner, but are fill more condenfed, the Difference between it and Stone will not be fo great as to be difcerned by the Eye; yet it is probable that thefe

[^15]
PROPOSITION XII.

To explain the Caufe of poifonous or letthiferous Waters; and to enumerate the Places of the Earth in which they are found.

THE Lake Afpbaltites is one of thefe, having Arfenic mixed with Bitumen in it (i). The Fountain of Neptune, near Terracina in the Country of the Volfcians was famous of old, becaufe all that drunk of it immediately loft their Lives; and therefore it was filled up with Stones by the Inhabitants. At Cbycros in Thracia there was a Lake that killed not only thofe who drunk of it, but even thofe that wafhed in it. There is a Fountain in Theflaly which Cattle are not fuffered to tafte, nor any kind of Beaft to come near it. Vitruvius relates, that there is fuch deadly Water as this near the Sepulchre of Euripides in Macedonia. As to the Spring and River Styx in the
(i) Near E/peries in Upper Hungary are two deadiy Fountains whofe Waters fend forth fach an infectious Steam that it kills either Bealt or Bird approaching the fame; for the preventing of which they are walled round and kept always civered. In Ireland there is a Lake which commonly fends up fuch a peftilentious Vapour, as frequently kills Birds that endeavour to fly over it. 'Near - Dantzic there is an inland - Sea made by the Confluence of - three Rivers, whole Waters 6 are fiweet and wholefome,

- and well ftored with delicate
- Fifh; yet in the three Sum-
- mer Months, fune, $\mathfrak{F} u$ ly,
- and Auguf, it becomes every
- Year green in the middle
- with an hairy Efflorefcence ;
- which green Subttance being
- by fome violent Wind forced
- afhore, and with the Water
- drunk by any Cattle, Dog, or
- Poultry, caufeth certain and - fudden Death'. See Mr Kirkby's Obfervations upon it in Pbilof. Tranf. No 83. Beyond the Falls of Rapabanas in Virgzinia there are faid to be poifonous Waters, Eg\%.

Mountain

Chap. 17. of Univerfal Geography. 385
Mountain Nonacris in Arcadia; the Antients write that it fprings out of the Rocks, and is fo cold and venomous that it is called a River of Hell, alfo that it can be contained in no fort of Veffel made of Silver, Brafs, or Iron, but only in the Hoof of a Mule. Some Hittorians write, that Aiexander the Great was poifoned with this Water, by Folla the Son of Antipater, not without a Sufpicion of Arijotle's being concerned in it. Vitruvius writes, that there was a Water, in the Kingdom of Cottus on the Alps, which whoever tafted immediately fell down dead. At this Day there are feveral poifonous Springs found on or about the Alps, but the greateft Part of them are ftopped up with Stones; fo that they are not fo much as taken Notice of.

THE Caufe of fuch Waters is their running or gleeting thro' arfenical, mercurial, and antimonial Earths, whereby they are impregnated with their Fumes; for as the Smoke, or Fume, of Arfenic kills living Crea ures, fo Waters impregnated with fuch a Fume do the fame.

PROPOSITION XIII.

To explain the Caufe and Differences of coloured Waters; and to enumerate the Places of the Eartb in which they are found.

A T the Town of Cbinon in Touraine (a Province in France) there is a yellowifh Spring gufhes out of a Cave, and as it flows is concreted into a. Stone. In the Kingdom of Congo in Africa there is a River of a red Colour that flows into the Sea. In the Valley of St George near Sultzmat in Alfatia there is a Fountain of red Water, called Rotbwaffer. The Rubicon, (fo called from it's rednefs) now PiJatello, in Italy, flows from the top

VOL.I.
C c
of the higheft Alps. There are fome Fountains of black, greenith, and other colour'd Waters, but thefe are very rare (k).

THE Caufe of the Colour of thefe Waters, is the Colour of the Earth thro' which they run, before they come to the Fountain-Head.
PROPOSITION XIV.

To exflain the Origin of falt Waters; and to enumerate the Places in which they are found.

THEY are owing to two Caufes. 1. Some proceed from the Sea in fubterraneous Paffages, to the Superficies of the Earth, where they fpring up. 2. Others are generated from the Salt contained in the Bowels of the Earth, by pervading the Places where it lies, and mixing with it's Particles and Spirits, before they come to the Fountain. Salt Eountains are very common, and known to every one. In Germany there are thofe at Hall, in the County of Tyrol, at Hall in Upper Saxony, at Hall in Swabia, and at Hallen in Bavaria; likewife thofe in the Archbifhopric of Saltzburg, in the Duchy of Magdeburg, at Saltzburg in Lorrain; and feveral others in other Places, which make up almoft one hundred. We need not fay any more to them here, fince we alfo treated of them in the laft Chapter ; and every one knows whence they pro-
(k) In the Province of Los Carcas in Peru, there is a Fountain, out of which iffues a confiderable Current, of a Colour almoft as red as Blood. Near Tecoille in Somerfetbire, there is a Pool which contains a greenif fort of vitriolic Water. At Baffl, there is a Spring of a blueih Co:our. At Eglingham,
in Nortbumberland, there is Water comes from an old Drift, formerly made to drain CoalPits, which has an atramentous Quality, and is turned as black as Ink, by an Infufion of Galls. There are feveral of thefe atramentous Springs in other Courtries.

Chap. 17. of Univerfal Geograpby. ceed, viz. from hidden Quantities of Salt, lying here and there under Ground; it being itfelf ani Element.

PROPOSITION XV.

To explain the Caufe of boiling Fountains, and thofe that break out of the Ground with great Force; and to enumerate the Places of the Earth, in whicb they are found.

T HE Caufe is partly a fulphureous, and partly a nitrous Spirit, mixed with the Waters under Ground; if it be fulphureous, the Waters are hot; if nitrous, they are cold; but all that boil and bubble up like hot Fountains are not fo, but feveral of them are cold; as that near Culma, called the Mad Water, which we mentioned in Propofition ro. The River Tamaga, in Gallicia, rifes from a Lake, and at it's breaking out, makes an odd kind of bellowing Noife, for fome Months of the Year (l). The ftrange hot Fountain in Fapan, which
(l) There is a boiling Fountain at Peroul, not far from Montpellier, that heaves and rifes in fmall Bubbles; which manifeftly proceeds from a Vapour, breaking out of the Earth; for upon digging any where near the Ditch, and pouring other Water upon the dry Place newly dug, it produces the fame boiling. The like bubbling of Water is found round about Peroul, upon the Sea-Shore; and in the Etang itfelf. There is a famous boiling or flaming Well near Wigan in Lancaßire, with which you may boil an Egg, and upon the approaching
of a lighted Candle, it takes Fire. One like this was difcovered in the Year 1711, at Brojelay, near Wenlock, in the County of Salop: It was firft found out by a terrible uncom. mon Noife in the Night; the Noife was fo great, that it awakened feveral People in their Beds, that lived hard by, who got up to fee what it was, and found the Earth to rumble and fhake in a Place near the Se_{e} vern, and a little boiling up of Water through the Grafs. They took a Spade, and digging up fome part of the Earth, imme. diately the Water flew up a great c 2

Height, four Yards high, with a Noife refembling the Report of a great Gun. In Weftphalia, there is a Fountain called Bolderborn, becaufe of the great Noife it makes in fpringing.

ACIDULE, and moft het Baths, break out alfo with a great Force of Spirits, and boil up as if they were boiling hot; in Baths it is caufed by a fulphureous Spirit, and in Spaws and Acidula, by the Spirit of Vitriol and Nitre, E c.

Height, and a Candle that was in their Hand fet it on Fire. T'o prevent the Spring being deltroyed, there is an Iron Ci ftern placed about it, with a Cover upon it to be locked, and a Hole in the Middle thereof, that any who come may fee the Water through. If you put a lighted Candle, or any thing of fire to this Hole, the Water takes Fire, and burns like Spirit of Wine or Brandy. Some People out of Curiofity, after they have fet the Water on Fire, have put a Kettle of Water over the Ciftern, and in it a Joint of Meat, and boiled it much fooner than over any artificial Fire that can be made. Yet what is moft flange, the Water of itfelf is as cold as any Water can be, even juft when the Fire is put out. Of the fame fort is that near Grenoble
in Daupbiné; that near Hermanfadt in Tranfylvania; that near Chermay, a Village in Switzerland; that in the Canton of Friburg, and that not far from Cracozv, in Poland. There are many hiffing Springs, bubbling at the top, in Switzerland, and in other Places near the Rbine. There are fome boiling Waters that are hot to feveral Degrees, fo as to boil Eggs, and other things put into them; as thofe near the Solfatera, not far from Naples; as alfo upon the top of Mount Zebio, in the Duke of Modena's Territories, not far from this Villa, near Safalo; in the Source of the Emperor's Bath at Aken, in the County of Fuliers, E° c. This in part from Dr Tancred Robinfon's Obfervations upon boiling Fountains, in Lowtborp's Abridgment, Vol. II, Pag. 329.

Снар. 17. of Univerfal Geograpby.

PROPOSITION XVI.

To enumerate the Waters that bave otber ftrange Properties, and to enquire into the Caufes of them.

HITHER ought all fuch to be referred, as cannot be conveniently reduced to the former Clafs. There is a Fountain at Cadima (eight Leagues from Coimbra) in Portugal, which fwallows up whatever is thrown into it; and there was formerly near to this, one that vomited up whatever was thrown into it, but it is now ftopped. Eufebius Nierembergius relates, that there is a Lake not far from Guadaiana in Andalufia, which fortels a Storm, for when a Storm is approaching, it breaks out with horrible Roarings and Howlings, which may be heard at eighteen or twenty Miles diftance *. There is a Well near Calais, in [Picardie,] into which if you throw a Stone, you'll hear a Noife in the Cavity, like a prolonged Thunder-Clap. There are fome Wells on the Alps, whofe Waters caufe thofe that drink of them, to have great Swellings about their Necks. There is a Fountain near the Town of Anteque in the Province of Granada, which is of fuch a Nature, as to diffolve Rocks.

NEAR Tours, a Town in France, People vifit the dropping Caves, (called les Caves goutlieres) from whofe Concavity Drops of Water fall in feveral Figures, as that of Nuts, Almonds, $\mathcal{E}^{2} c$.

THE hot Fountain in Fapan, fchorches and confumes every thing put into it, Iron, Flefh, Cloth, $\xi^{2} c$.

THERE was formerly a Fountain at Clitor, a Town in Arcadia, whofe Water, being drunk

[^16]THERE was a Spring in the Inand of Cbios, made thofe that tafted thereof flupid; and at Sufa in Perfia, there was a little Well, which made their Teeth fall out that drank thereof. The Studious may collect feveral other ftrange Properties of Fountains, in reading of Authors. Their Caufes proceed from the Situation, or peculiar Properties of the Places where they are found (m).

PROPOSIGION XVII.

To enumerate tbofe Fountains that fow only at certain Times, or that ebb and flow; and to explain tbeir Caule.

THIS Propofition belongs to the preceding Chapter, becaufe it is about marvellous Waters, and being then omitted, it fhall be explained here.
(m) Jofepbus, the Hiftorian, tells us of a River, which for fix Days runs violently fwift, and refteth on the feventh always; wherefore it is called the River of the Sabbath. Tavernier tells of a Well at Scbiras in Perfáa, which is fifteen Years rifing to the top, and fifteen Years finking to the bottom. 'About - two Leagues from Paderborn, - is a treble Spring called Me-- thorn,which has three Streams - two whereof are not above a - Foot and a half diftant from - one another, and yet of fo dif-

- ferent Qualities, that whereas
- one of them is limpid, blue-
- ifh, luke warm, and bubbling;
- the other is Ice-cold, turbid,
' whitifh, and heavier than the
- former, and alfo killeth all
- Poultry that drink of it. As
' to the third Stream that lies
- lower than the other two, a-
' bout twenty Paces diftant from
' them, is of a greenifh Colour,
- very clear, and of a four fweet
' Tafte, pleafing enough.' Pbilof. Tranf. No 7. Pag. 133. At the City of Toledo in Spain, there is a Fountain, whofe Waters nearthe bottom, are of an acid $\mathrm{T}_{\text {afte }}$, but towards the Surface extreamly fweet. Near to Sanyenga (a Village not far from Rio de la Grace, in Negroland) is a Well of ten Fathom deep, whofe Water is naturally fo very fweet, that in Talte it comes nothing fhort of ordinary Sugar. Girdon.

CHAP. 17. of Univerfal Geography. 391
IN Wales, not far from Dinevozur Caftle [near Carmartben,] there is a Fountain which ebbs and flows every day with the Sea, and obferves it's Hours.

THE like Flux and Reflux, is obferved in another on the top of a high Hill, in the Province of Connaught in Ireland, and yet the Water is fweet; the fame is obferved in the Fountain Lou-Zara, upon the Cbabretian Mountains in Gallicia, twenty Leagues from the Sea; alfo in the Village Marface in Guienne, there is a Fountain that follows the Tides at Sea, and flows at the fame Time with the Garonne at Bourdeaux. There are other Fountains that are faid to increafe and decreafe contrary to the Tides, fuch as Strabo and Mela report to have been in the Inand of Gades (Cadiz) (n).

I N Wales, near the Mouth of the River Severn, there is a Pool called Linliguna, which fwallows up the Water of the Flood Tides, as long as they flow (but is not increafed thereby): but when they begin to ebb, then it begins to rife, and to vomit out the Water with great Vehemence all round it's Banks.

IN Cantabria (Bijcay) there are the Tamarician Fountains, of which three out of the four, are dried up twelve times every day, fo that there feems
> (n) At a fmall Village called Newton, in Glamorganßire, is a remarkable Spring nigh the Sea, which ebbs and flows contrary to the Tides. • Lay-Well, - near Torbay, ebbs and flows 6 very often every Hour, vi-- fibly enough ; fometimes fix-- teen, fometimes twenty times. - The Ditance between high - and low Water Mark, is a-- bout five or fix Inches. It is - very pleafant to drink, and - feems to have no Communi-- cation with the Sea'. Pbilof.

Tranf. No^{104}. Pag. 909. [There are two Fountains in Craven in YorkThire, zobicb ebb and fisw; one at Gigglefweek, called Ebbs and Flows, wubich does So regularly every Day; the other at Hebden, called Thruskil, which fometimes (even in a great Drougbt, wben there bas been no Rain for a Montb) breaks out with a great Farce, of whitih, mudáy, troubled Water; tbougb at other times it runs very clear, and affords excellent fovert Water.

$$
\begin{equation*}
\mathrm{Cc} 4 \tag{to}
\end{equation*}
$$

to be no Water in them. Pliny relates this, but I queftion whether fuch are to be found now.

IN the Dakedom of Anjou, above Saumur, there is a Village called Varuas, from whence a Rivulet flows twice daily, and twice ceafes or ftagnates.

IN Savov, there is a large Spring called the Wonderful F cuntain, which ebbs twice every Hour and flows twice, making a great Noife before it begins to flow. It runs into the Lake Bourget.

ON the Mountains of Foix (in Languedoc, a Province of France) near the Village Belleftade, is the fource of the River Lers, which in June, 7 uly, and August, evbs and flows twenty four times every Day. Bertius relates this from Papyrius.

IN the part of Weftphalia, called Paderborn, there is a Fountain that ebbs and flows twice every Day, tho' it emits as much Water as, a little below the Fountain, turns three Mill-wheels. It breaks cut with a great Noife, and therefore (as we faid before) is called Bolderborn [i. e. the boiftrous Spring].

IN the Town of Villanova in Portugal, there is a Fountain, commonly vifited, that flows only from the beginning of May, to the beginning of November, and then leaves off; as Eufebius Nierembergius relates.

IN the County of Valais, in Germany, not far from the Baths called Leuckerbad, there is a Fountain called St Mary's Well; it ceafes to fpring on St Mary's Day in Autumn, and returns in May.

IN [Carniola,] not far from Laubach, there is a Lake that is fo dry in Summer, that it is fowed and mowed (0). The Water returns in Autumn, and
(c) This Lake is fo very re- | Defcription here, which we fhall murkable, that it will deferve a give from Pbilof. Tranfazt. No

and brings Fifh with it. Not far from hence,

 there is a Fountain that hath the fame Property. S O54, 109, 191. It is called the ZircbnitzerSea, fromZircbnitz, a Town upon it's Banks, of a bout three hundred Houfes. The Lake is near two German Miles long, and one broad. It is furrounded every where withmountains, and no where runs over. In ${ }^{\prime}$ une, $\mathcal{T} u l y$, and fometimes not till Auguft, the Water runs a way, and finks under Ground, not only by Percolation, or falling through the Pores of the Earth, but by retiring under Ground, thro' many great Holes at the bottom ; the little, if any, that remains in the hilly or rocky Part, is evaporated; and in Oitoler or Nuremb. it moft commonly returns again (though not at any certain Time) and foon covers the Tract of Earth again. This Return and Afcent is fo speedy, and it mounts at the Holes with fuch Violence, that it fprings out of the Ground, to the height of a Pike.
The Holes are in the chape of Bafons or Cauldrons, which are not of the fame Depth or Breadth, being from twenty to fixty Cubits more or lefs broad, and from eight to twenty Cubits deep. In the Bottom of thefe are feveral Holes, at which the Water and Fifhes enter, when the Lake ebbs away. Thefe are not in foft or loofe Earth, but commonly made in the folid Rock.

The Lake being thus every Year wet and dry, ferves the Inhabitants for many purpofes. For firt, while it is full of Wa-
ter, it draws to it 反everal forts of wild Geefe and Ducks, and cther Water-Fowl, which may be fhot, and are very good Meat. 2. As foon as the Lake is emptied, they pluck up the Rufhes and Weeds, which make Litter for Cattle. 3. Twenty Days after it is fully dry, they cut a great Quantity of Hay upon it. 4. After the Hay is in, they plow it, and fow Millet, which generally comes to Maturity. 5. There is great Variety of Hunting; there coming out of the neighbouring Woods and Mountains, plenty of Hares, Foxes, Deer, Swine, Bears, છૅ\%. fo foon as the Water is gone. 6. When it is ful!, one may Fifh in it. 7. All the Time when the Water goes away, it yields great abundance of Fifh, which they catch in the Pits and Places, where the Holes are nor big enough to admit them under Ground. Laftly, when the Water returns, it brings a fort of Ducks with it, which are bred under Ground, and when they firft come out can fiwimwall enough, but are flark Blind, and have few or noFeathers on them. They foon fee after they come into the Light, and in a fmail time get their Feathers, being much like Wild-Duks, and are of a goodTafte, and eafily caught.

The Caufe, or rather Modus, of all thefe wonderfulPhænomena in this Lake, is fuppofed to be, a Lake (riz. a fubterraneous one) under the Bottom of this,

SO the Pool or Lake of Maron, between the Sea of Galiee, and the City Belena, is fo dry in Summer, that it brings forth tall Herbs and Shrubs, yielding fhelter to Lions, Wolves, and other wild Beafts.
I N Guienne, near the Church of St Fean d' $A n$ geli, there is another that hath almof no Water in it in Winter, but abundance in Summer.
THE like is found in Spain, about twelve Miles from Valladolid, which begins to flow in May, and gives over in November.

A LL hot Baths flow without ceafing, except thofe, already mentioned, in the Grijons Country.
with which it communicates by the feveral Holes defcribed. There are alfo one or more Lakes, under the bordering Mountain \mathcal{F} avornick, but whofe Surface is higher than that of the Lake of Zircbnitz. This upper Lake is poffibly fed by fome of the many Rivers, which in this Country bury themfelves under Ground. When it sains, efpecially in Thunderthowers, which are the moft hafty, the Water is precipitated with great Violence down the fteep Vallies, in which
are the Chanels of thefe Rivulets; fo that the Water in this Lake being increafed by the fudden coming of the Rains, fafter than it can empty, fwells prefently, and finding feveral Holes or Caverns in the Mountain higher than it's ordinary Surface, it runs over by them into the fubterraneous Lake under that of Zircbnitz, into which the Water comes up by the feveral Holes or Pits in the Bottom thercof, as likewife by vifible Paffages above Ground.

S E C T. V.

Containing one Chapter.

C H A P. XVIII.

Of the Changes on the terraqueous Globe, viz. of Water into Land, or Land into Water.
PROPOSITIONI.

To enquire bow much of the Surface of the terraqueous Globe, the Earth and Water feverally take up.

1T is impoffible to know this accurately, becaufe we are ignorant of the Situation of the Earth and Ocean, about the North and South Pole, and becaufe their Superficies are terminated by irregular and crooked Lines, not eafily computed or meafured. But fo far as we can guefs, from a bare Infpection of the Globe, it feems that the Superficies of the Earth and Water are nearly equal; each taking up half of the Globe's Surface.
PROPOSITION II.

The Surfaces of the Earth and Waters, are not alrecays equally extended, but fometimes more, and fometimes lefs; and what the one lofes the other gains.

THE Sea frequently breaks in upon the Land in feveral Places and overflows it, or waftes it by degrees, and wafhes it away; by which means it's
it's Superficies is enlarged according to the bignefs of the Plane of Earth it overflows; fuch an Inundation happened of old in Thefaly, Ejc. But the greateft that we know of have made no fenfible Alteration in the Su face of the Globe, tho' it is pofible that, fome Time or other, there will happen fuch as may ; as we fhall fhew in Propofition xviii.

PROPOSITION III.

To compute bow much Earth and Water the terraqueous Globe contains.

TO find this accurately there ought to be known exactly the Surface of the Water; and it's Depth in different Parts of the Sea, and alfo the Bulk of the fubterraneous Waters. All which we are ignorant of, and have no method to find them; and therefore are at a lofs in finding the true quantity of either Earth or Water. We may form an Hypothefis, and take the Superficies of the Water for half the Superficies of the whole Globe, and alfo fuppofe the Sea to be a quarter or half a Mile deep, (one Place with another) not reckoning the Water in fubterraneous Caverns.

THESE being granted, the quantity of Water is found thus: Take a quarter or half a Mile from the Semidiameter of the Earth, and find the Solidity of a Sphere, whofe Semidiameter is equal to the Remainder. This Solidity being taken from the Solidity of the whole Globe, half the Remainder is the quantity of Water. This laft being again fubftracted from the Solidity of the Globe, leaves the quantity of Earth, to which, for the Mountains, you muft add a fourth or fifth Part of the Balk of the Water, or even a half: yet

Chap. 18. of Univerfal Geograpby.
all this is but guefs-work, and not to be depended upon for Truth.

PROPOSITION IV,

The Water may leave the Shore, and the Places of the Earth which it covered before, for Several Reafons; fo that the dry Land may appear where it was Water or Sea before, and a new Plat of Earlb may feem to be formed.

TRACTS of Water are feven-fold; 1. The Ocean. 2. Bays. 3. Seas or Streights. 4. Rivers. 5. Lakes. 6. Ponds. 7. Bogs.

THAT Bogs or Marhes may be drained, either by letting off the Water, or drying it up by continual Fires, or by throwing dry Earth into them, none need doubt; for in feveral Places and Countries there are fertile Fields, where there were formerly nothing but Bogs and Marfhes; as in Weftphalia, Gelderland, Brabant, Holland, Mufcovy, \&c. So the Peloponnefus in Greece was, in the Time of the Trojans, barren and marfy Ground, but was made fertile in Ariftotle's Time by draining it.

T HE fame may be faid of Pools and Ponds, which are not very different.

PROPOSITION V.

Rivers leave their Sbores (or part of tbeir Cbanels) $d r y$, and form newe Parcels of Ground in many Places.

1. IF their Water bring down a great deal of Earth, Sand, and Gravel out of the high Places, and leave it upon the low, in procefs of Time thefe will become as high as the other, from which becomes dry Land.
2. IF a River take another Courfe, made by Art, or Nature, or fome violent Caufe, as the Wind, or an Inundation, it leaves it's former Chanel dry.
3. I F the Fountains that feed a River are obftructed, or ceafe to fend out their Waters; becaufe of the Earth falling in, or by being ftopped with Heaps of Sand driven in by the Wind from the adjacent Places, the Chanel of that River becomes dry.

EX A MPLES of Rivers, whofe Chanels are now dried up either wholly or in Part, are frequently met with among Authors; not of any. great Rivers, but of thofe of the fmaller fort, and fome Branches of the great ones; thus that Branch of the Rbine, which formerly run by Leyden into the German Ocean, fome Ages ago forfook it's Chanel, which is now dry Land, and ftagnates between Leyden and Catwic.

W E have alfo. feveral Examples of Shores that have been left dry by Rivers making themfelves deeper and narrower Chanels than they ufed to run in; alfo of Rivers that are not navigable now, which have been fo formerly, their Chanels being made thallower, and, in procefs of Time, may be quite choaked up, as the Scbelde, \mathcal{E}_{c}. Therefore the Rulers of Countries take care that the Sand-Banks, Filth, and Sediment, be continually removed out of fuch Rivers, fo that they may be kept open and navigable as much as poffible.

BUT great Rivers are not dried up, or tarned into dry Land in a great many Ages, or even Myriads of Ages, becaufe a vaft number of fmall

Снар. 18. of Univerfal Geography. 399 ones flowing from different Parts make up their Waters and feed them; fo that if one or two of them be dried up, or change their Courfe, it will be a long time before fuch an Accident happen to them all. One fingle Sand-Bank indeed might perform Wonders, in choaking up the Paffage of a River, and make it take a new Chanel, whereby the former is dried up; but the River itfelf continues to flow, becaufe it's Fountains and Branches are not obftructed. Neverthelefs it is certain, that neither the Nile, the Tanais, the Elbe, nor the Rbine, \&c. did or will always flow in the fame Places, but their Chanels were formerly dry Land, and in future Ages will be fo again.

> PROPOSITION VI.

Lakes are dried up and turned into Eartb.
IF the Lake be fed by Rivers flowing into it, the Change is made by turning the Rivers another Way, or by their ceafing to flow, together with Evaporation. If it receive it's Waters from the Ocean or Sea by fubterraneous Intercourfes, thefe are to be ftopped or diverted; and fo the Lake at firft is changed into a Fen or Bog, and afterward into dry Ground. Arifotle (fpeaking of Lakes fed by Rivers) fays, it is certain that the Force of the Water bringing Mud, or fuch like Matter, into any Lake, changes it into a Fen or Bog, and afterwards into dry Ground; for the Water ftagnating, is in Time dried up. Thus the Mud and Sand, which the many Rivers bring down into the Lake of the Mrootis, have made it fo fhallow, that it will not admit fuch large Ships now, as failed upon it about fixty Years ago.

400 The Abolute Part SECT. V. Of fmall Lakes that are turned into dry Land we have feveral Inftances, efpecially in Holland.
PROPOSITION. VII.

Streigbts are dried up and turned into Ifthmus's, or Parts of Continents.

THIS is caufed by the continual gathering and fubfiding of the Mud and earthy Matter, which in Time choaks up the Streight, and ftops the Intercourfe of the Water.

THUS it feems very probable that the Ifthmus between Africa and Afia, which parts the Red-Sea from the Mediterranean, was formerly a Streight and joined them. The Depth of the Sea in feveral Streights is alfo found to grow lefs, and the Water to become fhallower than it ufed to be, which is a certain Sign that fuch a Streight, fome Time or other, will be left bare, and be turned into dry Land. So that Bay in the Allantic Sea which the Hollanders call the Zuider Sea, and the Streights of the Texel, will not now admit of loaded Ships of the firft or fecond Rate, as they ufed to do formerly; and as the Water evidently leffens and becomes fhallower every Year, it is likely the Texel, will one Time or other, become dry Ground : and that Streight which they call Ulie will, very likely, have the fame Fate.

PROPOSITION VIII.

Bays may be in time dried up, and turned into firm Ground.

T HIS may happen from a two-fold Caufe: 1 . Ifthe Streights which join the Bay to the Ocean become an Ifthmus, or be choaked up with Sand and

Chap. 18. of Univerfal Geograpby. 401 and Mud (that fuch a thing may happen, we fhewed in the laft Propofition); by this means the Bay is cut off from the Ocean, and becomes a Lake, which is turned into a Fen, or Bog, and then intodry Ground. 2. If the Chanel of the Bay be heightened continually by the Sand and Gravel, brought down by the Rivers into it, it will in Time be higher than the Ocean, and receive no more Sea-Water.

THUS the Mediterranean, Baltic, Red-Sea, Perfian Gulph, Ecc. which are now Bays, may be changed, one Time or other, into dry Land; as we fhall further prove in the next Propofition.
PROPOSITION IX.

The Ocean in fome Places forfakes the Sbores, fo that it becomes dry Land webere it was formerly Sea.

THIS is caufed by thefe Means: I. If the force of the Waves dafhing againft the Shore, be broken by Cliffs, Shoals, or Rocks, fcattered here and there, under Water, the earthy Matter contained in the Water, as Slime, Mud, \mathcal{E}^{2}. is made to fubfide, and increafe the Height of the SandBarks, whereby the Violence of the Ocean is more and more refifted, which makes it yield more Se diment ; fo that at length the Sand-Banks, being raifed to a great Height and Bulk, entirely exclude the Ocean and becomes dry Land. 2. It contributes much to heightning the Shores if they be fandy and rocky, for then the Sea dafhing againft them, and withdrawing, carries little or nothing away from them, but every Time it approaches them it brings Dregs and Sediment, whereby they are increafed in the Maner aforefaid. 3. If fome neighbouring Shore confift of light, mouldring, porcus, Earth, which is eafily VOL. I, Dd wafhed
wathed away by the Flux of the Sea, it is mixed with the Water, and left upon fome other adjacent Shore that is harder ; befides, when the Sea encroaches upon one Shore, it relinquifhes another not far off. 4. Large Rivers bring down vaft Quantities of Sand and Gravel to their Mouths, (where they exonerate themfelves into the Sea) and leave it there, partly becaufe the Chanel is wider and fhallower, and partly becaufe the Sea refifts their Motion; but this is chiefly obferved in Countries, whofe Rivers annually overflow their Banks. 5. If frequent Winds blow from the Sea to the Shore-wards, and the Shore itfelf be rocky or of tough Earth without Sand, it gathers Slime and Mud, and becomes higher. 6. If the Tide flow quick, and without great Force, but ebb flowly, it brings a great deal of Matter to the Shore, but carries none away. 7. If the Shore defcend cbliquely into the Sca for a great Way, the Force of the Waves are broke and leffened by Degrees, and the Sea leaves it's Filth and Slime upon it.

THERE are feveral Places of the Earth, which, it is certain were formerly covered by the Ocean. Where Egypt is now, it was formerly Sea, as appears both from the Teftimony of the Antients, and Experience; for the Nile, flowing from the remote Regions of Etbiopia, when it overflows it's Banks, covers all Egypt for a Time, and then fettling by Degrees, it leaves the Dregs, Mud, Dirt, and earthy Matter, which the fwift Courfe of the River had brought down; by this means Egypt becomes annually higher and higher. But before fuch a Quantity of Matter was brought down to the 'Nile, the Sea covered the Land of Egypt, tho' it be repulfed and hemmed in now by the Earth's acquired Altitude. Arifotle, among others, afferts this, and fays: This Place, and the whole Coun-

Сhap. 18. of Univerfal Geography. 403 try (meaning Egypt) were formed by the pouring in of the Nile, and feems to gain Firmnefs every Year. But fince the neighbouring Inhabitants, by Degrees, began to cultivate the Marfhes and Bogs as they dried up, it is impoffible to guefs at the Time of this Mutation. Howerer, it feems that all the Mouths of the Nile have been made by Hand, and not by the River, except that of $C a-$ nopus. It is further evident, that all old Egypt confifted only of one Town, which they called T"bebes. Homer declares this, who flourifhed (I may fay) not long after thefe Changes; for he mentions that Place as if there were then no fuch City as Memphis, at leaft not fo large. Seneca explains this better thus: Egypt (fays he) arofe wholly at firft from Mud; and if we may credit Homer, the Inand of Pbaros was fo far diftant from the Continent, as a Ship, with all her Sails fpread, could fail in a Day, but now it is joined to the Continent; for the Nile flowing muddy and troubled, and carrying down much Slime and Dirt, leaves it about it's Mouths, whereby the Continent is annually enlarged, and Egypt is ftretched further and further every Year. Hence comes the Fatnefs and Fertility of the Soil, and alfo it's Evennefs and Solidity; for the Mud fettles and grows dry and hard, and the Ground becomes firm by what is laid upon it.

T HE Ganges and Indus, both famous Rivers in India, do the fame as the Nile, by their Inundations; alfo the Rio de la Plata in Brafil. And it is very probable that Cbina was formed by this means, or at leaft enlarged; becaufe the impetuous River, called the Hoambo, flowing out of Tartary into Cbina, and frequently overflowing it's Banks, (tho' not annually) hath fo much Sand and Gravel in it, as to make a third Part of it's Waters,

THESE Examples demonftrate the fourth Caufe, viz. that Rivers make the Sea forfake the Shore ; but the Sea itfelf, in feveral Countries, is the Caufe of it's own retiring, by bringing to the Shore, and there leaving Sediment and Matter eriough to encreafe the Altitude of the Coaft; fo that it fuffers not the Sea to overflow it any longer. Thus Holland, Zeeland, and Gelderland, were formed; for the Sea covered thefe Countries formerly, as is known both from the antient Monuments mentioned in Hiftory, and the Quality of the Soil itfelf. In the Mountains of Gelderland, not far from Nimeguen, there are found Sea-Shells, and at a great Depth in Holland are dug up Shrubs and ouzy matter; add to this, that the Sea itfelf is higher than thefe Countries, and would overflow and cover them, but that it is reftrained by Banks and Dams. On the other hand, there are fome that think Holland and Zeeland arofe from the Mud and Sand brought down by the Rbine and the Maes; nor is this unlikely. Pruffa alfo and the adjacent Countries daily become larger by the Sea's retiring.

PROPOSITION X.

To explain the Origin or Rife of Sand-Banks.
B Y Sand-Banks we underftand large Collections or Cliffs of Sand in the Water, ftanding up above the Chanel of a River, to fuch a Height as to hinder the Paffage of Ships. The Dutch Sailors call them een Droogte, cen Banck, een Rifs; the Portuguefe, Abrotbes, and Baixes. They differ not from Rocks, only that Rocks are hard, folid, and coherent in their parts ; whereas Sand-Banks confift of grains of Sand, that ftick more loofely together. Tho' thefe two are often confounded.

THESE Sand-Banks lie either in the Chanels of Rivers, as frequent'y in the Elbe, and the Wolga ; or at the Mouths of Rivers, as is alfo frequent in the two Rivers juft mentioned ; or on the Sea Shores, or in the middle of the Sea. The manner of their Generation is the fame as in the foregoing Propofitions we obferved of the drying up the Courfe of Rivers, and the Shores of the Sea. For it generally happens, that the Ocean, before it leaves any part of the Land for good, firt produces thefe Sand-Banks near the Shore; then recedes by degrees, and leaves the Sand-Banks a part of the Continent. And after the fame manner it happens in the Chanels of Rivers, before they dry up, and are totally forfaken by the Waters. The moft common Caufe is the increafing of the Rivers with Rain, or melted Snow, fo that they rufh down violently, and wafh off their Banks, where they are narrow, Slime and Mud; which is carried down a great way from their Fountains, till 'tis brought to fome wide Place, where the Motion is not fo violent; and here it fubfides and forms a Bank of Sand, or Mud.

NOR can any greater Evil happen to the moft rich and flourifhing trading Towns, whofe loaded Ships have been ruined by them ; not to mention Towns, that thro' Time are quite forgot, there are the Cities Stavoren in Friefland; Arnemude, or Armugen, in Zeeland; and Dordracum in Holland; Antwerp in Brabant; and Stada, in the Bifhopric of Bremen; all which have had this Fate.

NOR is there fcarce any trading Sea-Port free from the Danger. Thefe Sand-Banks in the Elbe, have loft a great many Ships to the Hamburghers, which had efcaped many Dangers on the Ocean; and in other Places, efpecially the Texel, and the Ulie at Amferdam.

M A N Y of thefe Banks are feen on the SeaShore of Flanders, and Friefland, and at low Water feem to be parts of the Continent, having fo little Water above them at high Tide, as not to admit of Ships. The Sand-banks that are famous or infamous among Sailors for Shipwrecks, are 1. Thofe found all in one Place, at the Shore of Brafil, extending in a Tract of feventy Miles, which they that go to the Indies, ought carefully to beware of, when they are failing that way to avoid being becalmed on the Guinea Shore, tho' they come as near them as they can, to get the more Wind ; but ought to take Care they do not fall in between thofe Banks, and the Shore. 2. Thofe of St Ann, not far from Guinea in Africa, in fix Degrees of North Latitude: the Ships once carried among them, are not brought eafily from them; but detained for feveral Days, when the Seamen think they have got rid of them; for they do not lie clofe together, but are parted by Gulphs and deep Places; fo that when they are in ten Yards Water, they on a fudden fhall found but three Yards. 3. Thofe between Madagafcar, and Arabia, and Africa, called the Baixas of Fasdiea: they are fharp, ragged Rocks of Coral, of various Colours. 4. Those about Cbina. 5. Thofe towards Flanders; and feveralothers that may be feen in Sea Chafts.

W E have fhown one Way how they are formed, viz. by the fubfiding of the Matter which the Sea carries with it; we may add a fecond Way, and that is, by the Sea'scoming in upon Liand, that hath heaps of Sand on it, which, being covered, are Sand-Banks under the Surface of the Water. Thus at the Shores of Gelderland, and Holland, there are feveral fuch, which they call Dunen; they are in a long Tract raifed above the Land, on the

Chap. 18. of Univerfal Geograpby. 407 Shore; and if the Sea break in, then thefe Hills become Sand-Banks.

THEY are frequently at the Mouths of Rivers where they are broadeft, and where their Motion is not fo rapid but the Matter can fubfide, and the Waves of the Sea beat back the River-Water, which ftops it's Force. It is worth while to diftinguifh and confider thefe two ways.

PROPOSITION XI.

To judge whetber the Sand-Banks not far from the Shore will become a part of the Continent.

W E fhowed, in the preceding Propofition, that they are formed two ways; one by the fubliding of Matter, and the other by Heaps of Sand that are overflowed: if they happen in the firt way, and they be found to increafe fill, it is likely they will be joined to the Continent; but if in the fecond way, and they are not increafed, then it is not likely they will be joined, but rather that the Sea will come further : but this we only guefs.

PROPOSITION XII.

IJands are formed in the Sea and Rivers, the fame way that Sand-Banks are (which may become Iflands) and alfo anotber way.

FOR if there be gathered in any part of the Sea, Sand, Gravel, Slime, or Clay, it will in time become an Inland; and if the Sea break in upon the Land, and furround Hills, they become Inlands; and thus 'tis likely thofe were formed which are very high, as St Helena, the Ine of Afcenfion, $B^{\circ} \mathrm{c}$. efpecially if they be rocky and ftony.

Dd 4
AND

AND to thefe belong thofe which the Sea cuts off from the Land that juts out into it; thus antient Writers tell us, that Sicily was cut off from Italy, by the breaking in of the Sea violently; and the Verfes of the Poet on this Subject are well known.

B Y the firft way, viz. by fubfiding and gathering of a great many earthy Particles, were formed the Inands of Zeeland, Denmark, and Fapan; and alfo the Ines of Molucca: for there were found, by thofe that dug the Ground there a little way down, a great quantity of Sand and Shells.

THE Inhabitants of the Inand of Ceylon fay their Inand was feparated from India, and it is very likely. Thus the Inland of Sumatra is thought to have joined Malacca; and it is probable, becaufe of the feveral Banks and Quick-Sands there. It is certainly believed it was the golden Cberfonefus, and was counted to be a Peninfula, for it appears fo at a diftance, and to be joined to Malacca.

THE Indians, on the Malabar Shore, tell us, that the Ines of Maldives, were of old joined to India, in one Continent, and are now a great way from it, and divided into eleven thoufand Inands; and it is probable they will all in time be joined in one Inand, they being not diftant in fome Places above four or five Yards. The narrow Seas will become narrower, and fo join one to another. And indeed all the oriental Iflands, between the Continent of Afia and Magellan, feem to arife from the Sea's breaking in violently on the Land, and feparating one part from another; for the Pacific Sea moves with a continual force to the Eaft from America to there Ifles, and the Wind blowing conftantly that way increafes the force; it is not therefore unlikely that, feeing all there Inlands are in the Torrid Zone, Afar did of

Chap. 18. of Univerfal Geography. 409 old join the Magellanic, or South Land, the Earth being broke of here and there by the Sea, 'till at laft it made it's way to the Indian Ocean, and formed many Iflands ftrangely fituated clofe together, as fava, the Celebes, Borneo, Madura, Amboyna, \&c.

WE may judge the fame of the Iflands in the Gulf of Mexico, and at the Streight of Magellan.

I T is uncertain whether the Inands of the Agean Sea were broke off the Land by the Sea, the Waves from the Euxine and Mediterranean Sea meeting one another, or by the fubfiding of the Matter which was brought from the Euxine to the Propontis; tho' the former is more probable: and perhaps this was the famous Deluge of Deucalion. It is certain the Ine of Eubca, or Negroponte, joined Greece, as famous Writers relate; for the Sea between them is fo narrow as to have a Bridge over it.

WE have feveral Inftances of Inlands made. by Sand-Banks. Thus thofe in the Nile, and in the River of St Laverence in North America, were SandBanks. The Rivers make Inands alfo when they difcharge a Branch in one Place, and receive it in another, as in the Tanais, and Wolga, and others; which no doubt is done by the Induftry of Men. The Oby does the fame. The two Rivers, Rengo and Coauza, produced the Ine of Loanda, on the Shore of fouthern Africa, where they exonerate themfelves into the Sea, becaufe they bring down from the high Places a great quantity of Slime and Gravel with great Violence, which they depofited ftill in the Mouths of the Rivers, and fo madethe Ine of Loanda; which at firft was but a Sand-Bank, and now it is a fruitful Ifland, abounding with Inhabitants and fertile Land. We believe a great many Iflands on the Shore were formerly Sand-Banks, or Clay-Banks, tho' fome were made by parting them from the Continent, as at Norway: and this is moft probable of thofe that are hard and rocky.

BUT, in the Indian Sea, fuch may happen by both ways; for while the Sea wears off, it doth at the fame time carry away with it much Earth, which fettles in another Place; and this is much caufed by furious Winds, and frequent Storms, that come from the breaking of the Clouds in the rainy Months; from May to September. The Sea is ftrangely difturbed by there, fo that the Sand and Clay is raifed from the bottom, and carried to the Indian Shores. Thus the Mouths of the Harbours at Goa are fo obftructed by Heaps of Sand, which come with the force of the Storms from May to September, that fmall Ships can fcarcely enter; and thefe Heaps of Sand fo obftruct the Harbour of Cocbin, that they are like a Bar, or Wall, that neither great nor fmall Ships can enter.

FOR continual Rains on Mount Gate, and the frequent Storms from the Clouds which are feen hanging as it were above the tops of the Mountains, pour out fo much Water with fuch Violence that the Sea carries a great deal of Sand to the Shores; where, meeting with Oppofition, the Sand fubfides, which is carried away again by the Sea, when the Winter is over, and the Harbours cleared.

THERE are fome Inands fo near the Land, that they are furrounded at the time of full Sea; and if the intervening Chanel become higher, thefe Inands become a Part of the Continent.

A N D the overflowing of the Nile makes the Towns and Hills look like Iflands; and the Wolga doth fo fwell in May and Fune as to cover the Inands and Sand-Banks in it; and feveral of the Inands near India become like Sand-Banks in the rainy

Chap. 18. of Univerfal Geography.
rainy Months, when the Nile and Ganges overflow thefe Countries.

PROPOSITION XIII,

There is another way that Ifands are formed befides the two abovementioned, which is delivered by fome Writers, viz. that the Earth on a fudden is carried from the bottom of the Sea, and juddenly rijes to the Surface.

OTHERS think very juftly that this fabulous way comes from the fabulous Greeks and Poets, who will have Delos to have come up that way; and the grave Author Seneca fays, the Inland Tberafia did, in his Time, come up in the Jgean Sea, and that the Seamen obferved it: and tho indeed there are but few Examples of this kind, yet we are not therefore to think it impoffible; for there may be in the bottom of the Sea fome porous, fpongy, hollow, and fulphureous, Earth, (as there are many forts of light Earth, which is now grown to a great Height under the Water; and if it come to break off by the force of the Sea, and being of lefs or equal Weight with the Water, it may come to the Superficies, and an Inland appear on a fudden. Or a Spirit fhut up under the Earth, and endeavouring to break out, may without the force of the Water bring it up to the Surface; for thefe Spirits included have great Power, as appears in Earthquakes, by which whole Mountains have been thrown up and fwallowed down, and the fame way are great Towers and Walls blown up by GunPowder placed under Ground.

IF therefore the Inland that thus appears fuddenly do yet adhere to the Bottom, it muft be that it was forced up by the Spirits inclofed underneath; as fome write, that fometimes Moun- do not adhere to the Bottom, it might be loofened from the Bottom, partly by the force of the Water, and partly by the inclofed Spirits, and come up by it's own Lightnefs.

PROPOSITION XIV.

FROM this another doubt arifes; Whetber there are floating IJands; as Thales thought the whole Earth did float on the Water of the Ocean: but his Opinion is fufficiently refuted from the Sea's Chanel being continued every where, and yet there may be floating Illands if the Earth be hollow, light, and fulphureous. Seneca tells his Experience, that he faw in the Lake Cutilia, in the Fields of the Town Reate, belonging to the Sabines, an Ifland that floated, and Trees and Herbs on it, that was carried here and there by the Wind, yea by a gentle Gale; and that he never found it for a Day and Night in the fame Place; and he fays there was another Ifland that floated in the Lake of Vadimone; and another in the Lake of Statione. Thus the Antients fay, that Delos, and all the Inlands of the Cyclades, did of old float on the Sea. Nor need it be objected, why don't they fwim now? for the Anfwer is eafy; the floating cannot hold out long, for they reaching near the Bottom, and being carried from one place to another, they meet with a Sand-Bank and fettle there, efpecially if they come between two Sand-Banks, then they join and become fixed. In Honduras, a Province of America, there is a Lake in which there are feveral little Hills, planted with Shrubs and Herbs toffed up and down with the Wind.

I N the large Loch, called Lomond in Scotland, there is an Inland that floats, and is driven by

CHap. 18. of Univerfal Geography. 413 the Wind: it feeds Cattle, as Boëtbius, the Writer of the Scots Hiftory, relates.

SO far of the forming of dry Land where Sea was; now we fhall confider how there can Water come where there was dry Land.
PROPOSITION XV.

The Rivers run in new Cbanels for several Caufes.

1. W HEN they come from their Fountains, and get a Chanel either made by Art or Nature.
2. IF a River fend out a Branch from it, which is caufed for the moft part by Men, either to bring Water to a Town, or to another River : Examples whereof we fhewed above.
3. IF Rivers gain more and more upon their Banks; which happens, I. When the Chanel grows higher thro' the fubfiding of Mud and Sand. 2. If it wear off the Banks by it's fwift Courfe. 3. If it be increafed by another River flowing into it, or by Rains or Snow.
4. IF they overflow the Land, and become Lakes by not returning to their former Chanel, which if they do and leave a good deal behind they make Bogs.

COROLLART.

I T is probable Time was, when the Chanels of the Rbine, Elbe, Nile, and all other Rivers, were dry Ground, and may again become fo.

PROPOSITION XVI.

Lakes, Bogs, and fanding Pools, occupy Places that they did not before.

\author{

1. WHEN
}
2. WHEN they are firft formed and enlarged. as in Chapter xv.
3. IF plenty of Rain fall.
4. IF the Rivers carry much Water into the Lakes with great force.
5. IF their Chanel become higher.
6. IF the Lakes by the frequent and ftrong Waves wear off the Banks, and cover more Ground. Thus the Lake of Harlem, within thefe thirty or forty Years paft, is enlarged about one twentieth of a Mile round.

COROLLARX.

IT is probable, that the Places where the Lake Zaire, or Leman, or Parime, or of Harlem, or of Maotis, and the Bogs in Weftpbalia, and all others, were once dry Ground.

PROPOSITION XVII.

There is Ocean where there was none before.
THIS may happen feveral ways; 1 . When it breaks into the Land, making Bays and Streights, as the Mediterranean, the Bay of Bengal, the Arabian Gulph, and Bay of Camboia, E'c. Thus the Streights between Sicily and Italy, between Ceylon and India, between Greece and Negroponte, the Streights of Magellan, Manilba, and at the Sound; yea fome will have the Atlantic Ocean thus made, and to have parted America from Europe, that they may better deduce the Generations of Men there from Adam. It is certain the Egyptian Prieft told Solon, the Atbenian, that about fix hundred Years before Chrift (as may be feen in Plato's Dialogue called Timaus) that there was once an Inand over againtt the Herculean Streights

Chap. 18. of Univerfal Geography. 415 of Gibraller, greater than Africa and Afia, called Atlantis, and by a great Earthquake and Inundation in a Day and Night, that it was afterward funk (viz. a Part of it); by which we may underftand there was a Tradition among the Egyptians, who were given to Learning, that America was feparated from the old World, many Ages before. It is much more probable as to the North part of America, that New-France, NewEngland, and Canada, did of old join Ireland; the Antients fay the Streights of Gibralter were dug by Hercules.
2. WHEN the Sea is driven on the Shore with ftrong Winds breaking down the Shores and Banks, made by Art or Nature ; there are feveral Inftances of Inundations, as in Theffaly of old, and not long ago in Friefland and Holfein.
3. WHEN it doth, by the fame Caufes, go over the Land in feveral Places making Inands; as we faid of thofe in the Eaft Indies, and the Bay of Bengal and Camboia, which flowed into the Land.
4. W HEN it wears off the Shores, and fpreads in upon the Land: thus the Baltic Ocean came in upon Pomerania, and deftroyed Vineta, a moft famous Sea-Port. Thus on the Shore of Norway it broke in, and cut off fome Inlands from the Continent, and the German Ocean broke in on Holland, near the Village of the Catti, and overfpread a great Tract of Ground; thus the Ruins of an old Britibl Caftle, that was a Garrifon of the Romans, is, a great way in the Sea, hid under Water. And on the North part of Ceylon near India, the Sea took off twenty Miles, and made the Ifland lefs; and there are many other Examples alfo.

COROLLARY.

HENCE we underftand, that where there is now Sea there was Land, and again may be, if the Earth hath lafted, and fhall continue, fome thoufand Years; of which fee Arifotle in his Book of Meteors, Chap. xii. Lib. i. and Stevin's Geography. If it be afked how the Sea can cover the Mountains, we anfwer they are not to be covered, but will be high Rocks therein, or Iflands, for all Iflands almoft have Mountains in them; as Ceylon, Sumatra, Fava; and fome are nothing but Mountains; as St Helen, the Ine of Afcenfion, the Hefperides: and feeing thefe Places were once Land, then thefe Iflands and Mountains in it were high Places on the Continent.

PROPOSITION XVIII.

Whether the wbole Surface of this Globe may be eitber all Land or Sea; or if there may be more Land or Water one time than anotber.

IT is fufficiently fhown in the fecond Propofition, that there may be lefs Earth, and confequently more Sea, one time than another. But to that Queftion, whether there may be a Deluge that fhall cover the whole, even the very Iflands; we anfwer the way how fuch a thing may happen, may be conceived and explained, yet can fcarce ever happen, the Earth being fo compactly joined and the Mountains fo high. The way it may happen is the fame as in in the fecond Propofition. If the Ocean continually wafh away the Shores and lay them in deep Places, at laft all the high Parts will come down and be wafhed away, and the Sea come in on the whole Earth ; there may be fome Mountains or their Roots wafhed wathed away, and they fall down; and it were eafier done if, as fome think, the Sea were higher than the Land, but this we have before refuted. And to that, whether the Sea can ever go all into Caverns of the Earth, and there be nothing but dry Land, we anfwer the fame way; tho' it may fcarce ever be: there is only one way by fuppofing the Caverns fo large as to contain the Sea, and none have yet demonftrated the contrary ; and tho' they are not, they may be made fo by the force of the Water or fubterraneous Spirits.
PROPOSITION XIX.

Why there are ferw Iflands in the widdle of the Ocean, and no Clufters of them, except at large IJands, or near the Continent.

W E need not doubt of the Truth of this, being confirmed by Experience. There is fcarce one little Inland in the middle of the Pacific Ocean, and there are but few found in the vaff Ocean between Africa and Brafil, except St Helen and the Ine of Afcenfion; but on the Shores of the Ocean, or great Continent, are all the Inlands, except the few I mentioned, efpecially the Clufters of Inands; thofe of the Agean Sea are near Europe and Afia, the Hefperides near Africa, the Maldives near India, and all the Indian Iflands lie between $A j a$ and the South Land, only the A zores, or Flandrian Inles, feem to be in the middle of the Ocean, between America and the Old World; tho' they are nearer the later.

T HE Caufe of this Phænomenon no doubt is, that they were cut off the main Land by the Sea's breaking in upon it, which could not cover all Places it came to, becaufe of their Height. It is likely they are alfo fome of them made thus: VOL.I. E
the

The Abflute Part Sect. V. the Sea wahing off fome Lands cannot carry their fmall Parts far off, but lets them fall down by degrees near the Shore, which being done for a long Time, Inands are at laft formed. 1. But in the middle Ocean there are few Inands, for the Particles wafhed off the Shore do not go fo far. 2. Becaufe there is a greater Motion and Force of the Water, which rather increafes the Depth of the Chanel than caufes any Inands. 3. Becaufe there being no Continent there, no Clufter of Iflands can be formed, according to the firft way that we fhewed they were made; yet of old when the middle of the Ocean was not where it is now, there might be a Clufter of Inlands, which might be gradually wafhed away.

> SECT.

S E C T. VI.

Containing the Explanation of the Atmopbere and Winds, in three Cbapters.

C H A P. XIX.

Of the $A T M O S P H E R E$ and $A I R$.
PROPOSITION I.

There are continually Vapours and Fumes exbaled from the dry as well as moif Parts, into the Space wbich furrounds the Earth.

THE Caufe is twofold; i. The celeftial Heat of the Stars, efpecially the Sun and Moon. 2. The terreftrial Heat, or fubterraneous Fire, mixed with the Earth, for we find all Bodies almoft fend out Exhalations when brought near the Fire, tho' very gentle; and feeing celeftial and terreftrial Heat is nothing but Fire, therefore Vapours and Fumes muft be raifed thereby. And as the Nature of Heat, fo Experience confirms the Truth of it; for Travellers in the Night may fee, efpecially when the Moon fhines, and near Waters, the Vapours that are raifed wandering about the Air, and that they are raifed in the Day-time by the Sun is commonly known ; as alfo when little Clouds afcend, which is a fure fign of Rain,

PROPOSITION II.

The AtmoJpbere is all tbat Space about the Earth, in which the Vapours are; and it is uncertain if any thing elfe be contained in it but Exbalations.

IT is alfo taken for the Exhalations themfelves that are about the Earth. It is no fmall Controverfy among the modern Philofophers, what that is which is about the Earth. Several famous Mathematicians are of Opinion there is nothing there but Exhalations; and fo the Atmofphere and Air is counted the fame: and above the Atmofphere is the æthereal Subftance next it. Others think that there is a kind of Body befides there Exhalations, which is called Air, tho' they allow that Exhalations may turn to Air, and Air to thick Vapour and Clouds; and after this Air, all the Way to the Orbit of the Moon, they place another fubtile Body, different from Etber, which they call Fire, indeed; but they confefs, improperly, as no way agreeing with our Fires ; for it ishot, (tho' not burning) dry, and very fubtile, not caufing the Refractions of the Rays of the Sun and Stars, which they own to be in their Air. Thefe things confidered, the two Opinions of the Philofophers differ rather in Words than in the Thing itfelf; for as to the Air, that is fo grofs as to caufe Refraction, and may be generated from Exhalations, that may be only a more refined Exhalation, tho' not from the Earth. As to the fublunary Fire, feeing they own it is improperly called fo, and is fo fubtile as to caufe no Refraction, it feems to differ but little from the æthereal Matter; we may then fay the Atmofphere, or Air, is a Body about the Earth, into which the Rays falling, are refracted (laying afide the Queftion whence it comes) ; which Defi-

C нар. 19. of Univerfal Geography.

 nition agrees with the foregoing one, nor is it very likely a Body fo fubtile could be exnaled from the Earth, as to make no refraction or hinderance to the Rays of the Sun, that come thro' the 居ther; and if there be fuch, we know how high they are or if they be out of the Atmofphere; which yet, if any would ftrongly maintain, believing the Particles of Fire that come from the Sun, on the Earth, do again travel back to it, they will not deny but the foregoing Definition is proper. Therefore the Atmofphere and Air is nothing but a great many fmall Bodies interwoven together and adhering to the Earth ; as the Down on a Quince or Peach.
PROPOSITION III.

There are fometimes more, fometimes ferwer Exbalations fent up; efpecially in different Places.

T HE Caufe is, r. The different Elevation or Depreffion of the Sun above or below the Horizon. 2. The different Age of the Moon, and it's Elevation above the Horizon. 3. The rifing and fetting of the other Stars, and their Situation above the Horizon. 4. The Difference in the Parts of the Earth; for Water and moift Places fend out more Vapours than dry and earthy.

PROPOSITION IV.

The Exbalations that compore the Almoppere are of different Kinds, especially in different Countries, viz. watery, faline, fulpbureous, earthy, and spirituous.

T H E Caufe is, becaufe there are fuch different Bodies in the Earth, and fome are moft eafily, and others with difficulty drawn up; fome may

$$
\text { E e } 3 \quad \text { doubt }
$$ exceeding fmallnefs of the minute Particles of Duft, that have more Superficies in proportion to the quantity of Matter in them, and therefore are lighter. 2. Becaufe of the mixture of fulphureous Particles, which carry them violently along with them.

AND that there are fulphureous Parts in the Air, appears from the fiery Meteors that are feen, as Lightning, Thunder, Fack with his Lanthorn, and the fulphureous Smell that is after Thunder and Lightning.

THERE can be no doubt of the watery Exhalations that are fpirituous and faline, they being very fmall and eafily drawn up; and the little Animals that are bred in the Air, in great Quantities do teftify the fame.

T HE Arifotelians divide Exhalations into two forts, Vapours, and Smoke. The Vapours are from the Water, and do eafily turn to Water again, and the Smoke from dry things; thus Sal Ammoniac turns all to Fume above the Fire; and hence it is that different Countries have different Air, and that it rains in one Place, and not in another.
PROPOSITION V.

The leaft and infenfible Particles of Air beat back or reflect all the Rays, as a Looking-Glass doth; but fome of thoje that are perceivable and compounded tranfmit more Rays and reflect fewer; otbers again, tranfmit fewer Rays and reflect more.

THEREFORE the Parts of the Air are divided into opake and pellucid; the former tranfmit fewer Rays, the latter more.

BECAUSE

Снap. 19. of Univerfal Geograpby. 423
BECAUSE the leaft Particles, like Atoms both from the Earth and Water, are little folid Bodies without Pores, and therefore do reflect and difallow a Paffage to the Rays; for it is very probable, that Tranfparency, or the paffing of the Rays, requires Pores duly difpofed, and void of Matter.

BUT the Parts of the Atmofphere, or Air, that are compounded of the leant Particles, if they have feveral Pores, duly difpofed, will be tranfparent and tranfmit many Rays; but if the Particles be joined very confufediy, and be without many Pores, they will not admit many Rays to pafs through.

HENCE it is, that the Sun difperfing a thick dark and cloudy Air, makes it more porous and tranfparent.

THAT the leaft Particles reflect the Rays, appears from this; if the Sun's Rays be admitted into a dark Room, in a clear Day, thro' a narrow Hole, you will clearly fee the Rays reflected in great Number (from the Particles llying in the Air) to your Eye, as it were from a LookingGlafs; and as thefe Particles are fill vifible, we may conclude, in fome Degree, the fame of thofe that efcape the Sight, and are leaft of all.

SOME would have the moift Exhalations to be tranfparent, and not the dry Fumes; but they are confuted by Experience and Reafon; 1. By Reafon; becaufe the Fumes and dry Exhalations may become as fmall and porous as thore that are moift ; for they think that Tranfparency does not confift in Porofity, but that it is a peculiar Quality of the Medium : and 2. By Experience; becaufe a clear Air hath more dry than moift Particles in it. This is undertood from the new kind of WindGuns which are difcharged not by Powder and Fire, but by help of the Air, which is comEe 4 preffed preffed and condenfed, that it fcarce takes up the fixtieth Part of the Room it had before, and yet there is no moiftnefs in the Gun; which muit have been if the Particles of the clear Air had been from Water.

PROPOSITION VI.

Exbalations do not of themfelves and of their own Nature afcend, but are forced up: or tbus, the Air is not ligbt, but beavy, confidered abfolutely.
A L L Things are faid to be heavy which would tend to the Center of the Earth if they were not hindered, and that the Air doth ; for the Earth being dug, the Air goes down to the Room made there, and it's tending upwards is ; 1. Becaufe Heats rarifies and makes it take up a greater Room. 2. Becaufe it is forced by other Vapours.

THUS in cold Countries, as Nova Zembla, and with us, no Cloud afcends in the Night, but the Heat of the Sun coming on rarifies it, and makes one Part to prefs and force another: but if the leaft Particles of Air were not folded together, but at Liberty, they would move up and be light (p).
(p) That Air is a ponderous Body, appears from a variety of Experiments, particulsly one, from which it's Weight ufes likewife to be eftimated.

Take a Glafs Tube, clofed at one end, which fill with Quickfilver, then inver: it with the open end, into a Veffel, alfo filled with Mercury, and the Mercury in the Tute wil, fo thwith fubfide, and after a few reciprocations, fland at thirty Inches above the Surface of the Mercury, contained in the Veffel. The Reafon why the Quickfilyer is fufpended at fuch a

Height is, becaufe it is impoffible for it to defcend, unlefs at the fame Time the Mercury in the Vefiel afcend ; which, being on every Side preffed with the Weight of the ambient Air, cannot quit it's Place, uniefs the Weight of Air exceeded the Weight of Mercury in the Tube. And that this is the Cafe will appear from hence; put all the above-mentioned Apparatus into a large Receiver, out of which, by the Air-Pump, cxtract the Air; then, as the Air is extracted, you may perceive the Mercury, contained

PROPOSITION VII.

Tbe upper Parts of the Atmofphere are more fubtile than thofe below; yet it may be, that thore in the middle Region may be thicker and groffer than tbofe near the Earth.

FOR the lighter Parts go upwards and the more fubtile Parts are the lighter. which fhows the Truth
in the Tube, gradually to fubfide; but if again you fhall by degrees let in the Air, the Mercury in the Tube will afcend, in proportion to the quantity of Air intromitted, 'rill at laft it reach it's priftine Height of thirty Inches. This Apparatus, of the Tube and Veffel, together with the contained Mercury, is, from it's Ufe in meafuring the Air, called a Barometer: and from it's Author, Torricellius, any Experiment perform'd by means thereof, is called Torricellian.
'Tis manifeft, that the Weight of the Mercury contained in the Tube, and the Weight of a CoJumn of Air, whofe Altitude is that of the whole Atmofphere, and whofe Bafis is equal to the O rifice of the Tube, if weighed feparately, the one will be equal to the other ; fo that when the Weight of the Air is diminifhed, the Barometer is deprefled, and vice verfa. Hence by taking a View of the Barometer, you may, at any time, know the prefent Gravity of the Air; which is a Problem of vaft Moment both in Univerfal Phyfics, and in Meteorology in parti-
cular, and which deferves to be ranked among the nobleft Inventions of the modern Philofophers.

By the Experiments performed fome time ago before the Royal Society, for comparing the Weight of Air with Water, and fo with other Bodies; by the firf Experiment the proportion was found to be as I to 840 ; by the next, as I to 852 ; and by the third as 1 to 860. And lately the Ingenious Mr Hauksbee, by a very fimple and accurately performed Experiment, found the Ratio of Air and Water to be as 1 to 885 . All which Experiments being made in the Summer time, at which Seafon the Air is by the Heat expanded, and confequently lighter ; and the Barometer ftanding at about $29 \frac{3}{4}$ Inches higher; this might perhaps be fafely determined upon, that the Barometer afcending to 30 Inches, and the Conftitution of the Air at a Medium, as to Cold and Heat, the Ratio of Air to Water would be as 1 to 800 ; and therefore feeing, the Weight of Water compared the Caufe of the fecond Part is, that thofe in the middle Region eafily go together and become groffer, the hot Particles carried up with them having left them, and the Rays reflected from the Earth having but fmall force in the middle Region, that is fo diftant from the Earth.

W HENCE it is, that after Rain the middle Region is more clear ; the groffer Part being fallen down (q).
PRO.
compared with Mercury, is as 1 to $13 \frac{\frac{t}{2}}{2}$, the Gravity of the Air compared to the Gravity of Mercury would be as 1 to 10800.
Furin's Appendix.
(q) If with the Hands we fqueeze a blown Bladder, we feel the included Air make a ftrong Refiftance, and by the Spring thereof, jumping back and difengaging itfelf, the Impreffions, or Cavities, made by the Hands on the Surface of the Bladder, are immcdiately, on ceafing to prefs, expanded and fmoothed; and this is called the Elaftic Force of the Air. This Force, every Particle of Air continually exercifes, and affecting a larger Space, contends againft an equal Force of ambient Particles; whofe Refiftance being either fortuitoully taken away or impaired, the Particle inflantly expands itfelf into the whole Extent, be it ever fo large. Hence if flender glafs Vials, or Bladders full of Air, and carefully ftopp'd, be put into an Air-Pump, they are burft by the Force of the included Air.

Thus if a Bladder, only a little blown and flagging, be carried to the Top of a Mountain, or lofty Edifice, it immediately fwells to fuch a Degree, that if the Mountain be of fufficient Height, it feems to be wholly ftuffed with Air. For the Altitude of the Atmofphere not being the fame upon the Top of a Mountain, as upon the plain Surface of the Earth, the preflure of the ambient Air is not therefore fo ftrong upon the Bladder placed there, and therefore the Air, included in it, fprings into a larger Space. That the Air likewife upon the Top of a Mountain, is lighter than in Places of lower Situation, is evident from the Barometer, which being taken to the Top of a Mountain, the Mercury fubfides ; fo that by means of it the Altitude, of Mountains might be very exactly calculated, were it once known in what proportion the Mercury falls; according to the different Height of the Place.

Vaftly great, yea almoft incredible is this elaftic Force, by which, according to the fa-

PROPOSITION VIII.

The Almo \int phere, or Air, growing bot, takes up more Room tban before, and the more the Heat leaves it, it contrafts the more, and takes up lefs Room.

THIS is abundantly confirmed by that Inftrument called a Thermometer, by which is meafured
mous Mr Boyle *, the Air, without the Affiftance of Heat, was dilated into a Space not only 60 or 150 , but 8000 , yea 10000 , and at laft 33769 times larger than that it poffeffed in it's natural State near the Surface of the Earth. And feeing the Air can be artificially compreffed \dagger to the fixtieth part of it's natural Space; it appears that the Place into which the Air may be artificially condenfed, to the Place, into which it would dilate itfelf, if freed from all Preflure, is at leaft, as 1 to fixty times 13769 ; or more than 826000 .

By a great many Experiments performed in England, France, and Italy, relating to the Contraction and Expanfion of Air, it is found that the Spaces into which, by different Weights, it is condenfed, are among themfelves in a reciprocal Proportion to their Gravities ; or, the greater the Preffure is on the Air, the lefs Space it poffeffes.

From which Theorem, together with the Proportion above

[^17]determined betwist the Weight of Air and Mercury, it is eafy to fee the Grounds of the Controverfies contained here and there in the Writings of the modern Philofophers, concerning the leffer denfity of the Air in the upper Regions, as alfo the Altitude of the whole Atmofphere.

Firft then, if we allow the the Air to have no Elafticity, but that thro' the whole Space 'twixt the Earth and the utmoft bounds and extent of the Atmofphere it is every where of the fame Denfity ; juft as Water, which, how foever deep, is every where from top to bottom equally denfe ; now fince from what has been already faid, it appears, that the Weight of a Column of Air, reaching to the top of the Atmofphere, is equal to the Weight of Mercury contained in a Barometer; and feeing alfo the Proportion of Weight betwixt equal quantities of Mercury and Air is found ; it were eafy to give a Definition of the Altitude of that Column of Air, or of the whole Atmofphere. For feeing a Column
lumn of Air one Inch high, is to the like Column of Mercury, as 1 to 10800 , it appears that thefe 10800 Columns, or a Column of Air 900 Foot high, is equal in Weight to 1 Inch of the Mercury, and confequently that all the 30 Inches of Mercury, contained in the Barometer, require a Column of Air 27000 Foot high. So that, according to this Hypothefis, the Altitude of the Atmofphere would be only 27000 Foot, or a little more than 5 Miles.

But when, in the high Regions, the Air, by it's elattic Force, refiles and expands itfelf, according as the Weight of the incumbent Atmofphere is diminifhed, it muft of necerfity be far more rarified and fubtile than the Air near the Surface of the Earth: and confequently a much greater Altitude mult be affigned to the Atmofphere, than what was found by the juft now mentioned Computation.

For feeing, according to the Theorem above laid down, the Spaces in which the Air is included, are reciprocally proportional to the comprefing Gravities ; but the denfity of every Body is in a reciprocal Ratio to the Spaces, which that Body poffeffes; the Denfity therefore of the Air in any Part of the Atmofphere will be proportional to the Weight of the whole incumbent Air. And further, if we fappofe the Al-
titude of the whole Atmofphere divided into innumerable equal Parts, feeing the Denfity of Air included in any one of thefe Parts is in proportion to it's quantity, and the Weight of the Atmofphere is alfo as the quantity of the whole incumbent Air; it appears, that the quantity of the whole incumbent Air is every where, as the quantity of Air included in the lower Part, which conititutes a Difference between every two neareft quantities of the whole incum. bent Air. It is a Theorem in Geometry; that fuch Magnitudes whofe Differences are proportional to the Magnitudes themfelves, thefe Magnitudes are in a continued geometrical Proportion. Whence if, according to the Hypothefis, the Altitude of the Air, by adding the equal Parts, into which it is divided, increafe in a continued arithmetical Proportion, it's Denfity will be diminifhed, or, which is the fame, the Rarefaction of the Air will be increafed in a continued geometrical Proportion. Such as know the way of following fuch a Series, by taking a View of one or more of the Rarefactions of the Air at. different Altitudes, may, without any Trouble, determine it's Rarefaction in any Altitude, or the Altitude anfwering to any Rarefaction, and fo allo the Altitude of the whole Atmofphere, if it may

Chap. 19. of Univerfal Geograpby. 429

the more Room, the more Heat it acquires; as we fhall fhow in the following Propofition. The natural
be known, or made the extream Degree of Rarefaction, beyond which the Air cannot pafs. Such as incline to know more on this Subject, may confult the famous Dr Gregory's Aftronomy, Lib. v. Prop. 3. as alfo the excellent Dr Halley's Differtation in PbiloSopbical Tranfaitions No $18 \mathbf{1}$. who have demonftrated the fame in a different, and fomewhat more difficult way of reafoning, which I have here borrowed from the Demonftrations of a very learned Friend.

But withal we muft not conceal, that thefe things have been rendered uncertain by the Obfervations of the famous Cafini * and his Affiftants; who, in order to extend the Meridian Line of the Paris Obfervatory, after having with great exactnefs meafured the Altitudes of feveral Mountains, and marked the Height of the Barometer on the Top of each of them, they found that the Rarefactions difcovered by that Method, no ways agreed with thofe we have lately laid down, but that they were far greater than what ought to come out from the abovementioned Proportion : whence becoming fufpicious, that the Experiments they had formerly made for finding out the Rarefaction of

[^18]the Air under different preffures, had not been managed with fufficient Accuracy, they determined again to put the Matter upon Tryal, which Subject being diligently treated of in the Royal Academy, and when there were made great Dilatations of Air, compared to which, the Rarefactions found on the Tops of Mountains, were woundrous fmall ; yet they found that all there exactly followed the reciprocal Ratio of their incumbent Gravities. So that it feems to be put beyond all doubt, that fuch is the Nature of the Air, which comes neareft to the Earth's Surface, that the lefs preffure it has upon it, the greater Space it dilates itfelf into: and feeing the upper Air, or fuch as environs the Tops of Mountains, does not obferve this Proportion, it follows, that it is of a different Nature from the Air that is next us, which notwithftanding needs be no caufe of wonder to us, if, according to the moft approved Sentiments of Philofophers, we allow that there is in our Atmofphere, befides Vapours and terreftrial Exhalations, a certain Body of kin to itfelf, and endowed with fuch Affections, as we have above affigned to the Air; and further, that thefe Vapours and Exhalations, are no ways capable of fo great Rarefaction, as is the Air ; and that thefe are mixed in far greater
greater plenty with the Air neareft us, than in the upper Air. Thefe things being laid down, it is manifeft that the Air of the higher Countries being lefs ftored with Vapours, has, in proportion to it's Denfity, more Elafticity in it thanthat which comes next to the Earth, whence the reciprocal Ratio of Gravity, which is in the Air next the Earth, does not hold here; and further, that Vapours and Exhalations have not fuch Flafticity as Air, but that this is much more rarefied and extenuated. But the excellent Mr Fontenelle, Secretary of the Society, explains thefe Phænomena in a quite different Manner, in his Hiftory of the Academy, Anno 1708.

He propofes fome Experiments performed by the famous Mr De la Hire, and others, from which he infers, that the elattic Force of the Air is increafed when it is mixed with Moifture, or when compounded of Air and aqueous Vapours, the Rarefaction will be greater, than from pure Air; and that therefore on the Tops of Mountains the Air is found more rarefied, becaufe many Vapours are carried thither for producing of Rain. The Experiments are thefe:

They took a flender glafs Siphon, one of whofe Legs ended in a large hollow Sphere, being open at the other. This

Siphon was full of common Air, and expofed to the external Air coming into the Siphon. The Globe and Siphon was plunged into hot Water, found by previous Experiments to be of the fame degree of Heat as boiling Water, and confequently caufing the fame degree of Rarefaction; tho' the Fire underneath were greater or lefs.

When the Air included in the Globe was rarefied with this degree of Heat, it would be gradually thruft out at the other end of the Siphon; 'till at length the Globe being heated to the utmoft, there was left a very fmall quantity of Air, highly rarefied, that poffeffed the whole Cavity. Then the Water being removed from the Fire, the Air, as it gradually cooled, which before poffeffed the whole Globe, being gradually contracted by the Cold, gave way to the Water that entered at the Orifice of the external Leg, and at length, when the Water became entirely cold, it was contracted into a very fmall Space, whillt the reft of the Globe remained filled with Water. Now by comparing the Space, poffeffed by the Air, cooled and reduced to it's natural State, and the whole Cavity of the Globe which it had at the utmoft Heat, it appears how much the Air was rarefied with that degrce of Heat.

Снар. 19. of Univerfal Geography.

 the moft fubtile in the World, and inconftant Motion, and while thefe are mixed with the Atmofphere,This Experiment was firf made in clear Weather, again in a moift and rainy Seafon; and at a third time, a little Water was left adhering to the inner Surface of the Globe. And it was obferved that the Air condenfed at the end of the Experiment, in the firt Cafe poffeffed $\frac{2}{5}$ of the Globe, in the fecond poffeffed but $\frac{2}{9}$, and in the third $3^{\frac{1}{3}} \frac{\frac{1}{2}}{2}$. Whence Mr Fontenelle concludes, that the Air was more dilated in the fecond Cafe, but particularly in the third, than in the firt Cafe; and therefore as the Air is the more dilated the more moift Vapour is mixed with it ; hence he concludes it probable, that for the fame Reafon, there is a greater Rarefactionon the Tops of Mountains, becaufe the Air that furrounds them is mixed with a greater quantity of Vapour. But there are two Confiderations that render the. Argument inconclufive. For firft in the two later Experiments, as aqueous Vapours were plentifully mixed with the Air, it might happen that when the Air was condenfed, and the Water entered thro' the Siphon into the Globe, thefe Vapours might again return to Water, and mixing with the other Water partly by the Force of Condenfation, and partly by the mutual Attraction there is betwist the Particles of Liquors, leave but little true Air included in the very fmall Space.

Whence it mightfeem, that the quantity of Air which rarefied with the fame degree of Heat poffeffed the whole Cavity, was lefs in the two later, than in the former $\mathrm{Ca}_{\mathrm{a}} \mathrm{fe}$; and therefore more dilated, fo as to poffers the whole Space.

Again, allowing that the Air was more rarefied in the later Cafes, yet as this was effected by the means of Heat, I do not fee how it follows that becaure the Vapours mixed with the Air, and agitated by Heat, are more rarefied than Air without Vapours, therefore thefe Vapours without Heat, fhould have a greater Elafticity than pure Air.

We fhall here add a Table of M. Cafini, junior, made from the foregoing Obfervations, and exhibiting the Height of the Air from the Surface of the Sea, correfponding to the Sinkings of the Barometer ; as allo the Spaces increafing in arithmetical Proportion, wherein the Height of the Air increafes almolt half a Frencó League, whilit the Barometer finks in twelfths of an Inch, at a time when, being placed on the Surface of the Sea, it ftands at about 28 French Inches or $29^{\frac{23}{13}}$ of Englifh. I ufe the Frencb Meafures, being unwilling, by reducing them to the Engli.b Feet, to difturb the beautiful Series of Proportions by fmall fractional Parts; tho' thefe may, by the help of mofphere, they feparate them, with great Force, and fo make more Pores, and thefe fiery Particles going away, the Particles of Air left by themfelves, do
the leffer Table fubjoined be eafily reduced to Englifh Meafure.

Chap. 19. of Univerfal Geography. 433

VOL.I.
Ff

Fatboms,

CHAp. 19. of Univerfal Geography.
Fatboms, Feet, Incbes, and Twelfths of an Inch.

French.	Englijh.	French.	Englijh.
- 1	$1{ }^{1} \frac{1}{3}$	60	64
2	$2 . \frac{2}{3}$	70	$74{ }^{\frac{18}{1} \frac{0}{5}}$
3	$3 \frac{3}{5}$	80	$85 \frac{2}{5}$
4	$4 \frac{4}{5}$	90	96
5		100	
7	$7{ }^{1 / 5}$	300	320
8	88	400	$426 \frac{1}{1} \frac{0}{5}$
9	929	500	$5332^{\text {c }}$
10	$10 \frac{1}{1} \frac{0}{2}$	600	640
20	21.2	700	$746 \frac{1}{1} \frac{0}{2}$
30	32	800	$8531^{2} ;$
40	$42 \frac{1}{1} \frac{5}{3}$	900	960
50	53.5	1000	$1066 \frac{1}{1} 0^{\circ}$

Englif.	French.	Englifh.	French.
1	$\frac{1}{8} \frac{5}{6}$	60	5646
2	$1 \frac{1}{1} \frac{1}{6}$	70	$65 \frac{1}{1}$ 응
3	$2 \frac{13}{18}$	80	75
4	$3^{\frac{12}{6}}$	90	$84 \frac{6}{16}$
5	$4 \frac{1}{6}$	100	9312
6	$5 \frac{1}{1} \frac{1}{6}$	200	$187 \frac{8}{16}$
7	6 \% 5	300	2812
8	726	400	375
9	8.76	500	$468 \frac{12}{16}$
10	$9{ }^{\circ} \frac{1}{6}$	600	$562{ }_{1} \frac{8}{6}$
zo	$18 \frac{12}{12}$	700.	656.4
30	$28 \frac{3}{16}$	800.	
40	37\% ${ }^{\frac{8}{6}}$	900.	$843 \frac{1}{1} \frac{3}{6}$
50	46×15	1000	$937{ }^{\frac{8}{8} 6}$

(r) Mr Hauksbee, in his Pby-fico-Mecbanical Experiments, pag. 218 . has, by a very curious Experiment, determined the Ratio of the Places poffefled by the Air according as it is differently heated.
$\mathrm{ABC}\left(\mathrm{Fig}_{3}\right.$ 25.) is a rectangular Glais Tube, B a little Column of Quickfilver: A the extremity of the Tube, cemented to a Screw, fitted with a Cap, and fhut after the fettling of the Quickfilver, the Space $A B$ is full of common Air, included betwixt the Screw and the Quickfilver; whilft the part of the Tube BC, is open to the external Air. This Tube Mr Hauksbee placed in a proper Veffel, along with a Thermometer, then pouring in hot Water enough to cover the Ball of the Thermometer, the Quickfilver B moved from or

С нар. 19. of Univerfal Geograpby. 437

COROLLARY.

THEREFORE the Height of the Atmofphere is not conftant, but increafeth and decreafeth, at Mid-day greateft, and Mid-night leaft, and of a mean Height at Sun-rifing or fetting, as in Propofition xiv.
PROPOSITION IX.

To make a Thermometer, or Thermofoope, by wbich we may try the Cbanges in the Air, as to Heat and Cold.

LET us take a Glafs with a long round Neck and round Body L H (Fig. 26.), let it be fartened to a Board M N P Q , with it's Neck downward, and let there be a Veffel fo filled with coloured Water, put under it, that the Part of the Neck L F may be under the Water, and chufe a Day of a middle Conftitution between Heat and Cold, with which the Heat and Cold at other times may be compared; and let the Water be poured into the Veffel at that time, when the Air growing cold the Water will afcend above F of it's own accord; for the Air that before filled the Space F A being condenfed by the Cold takes up lefs Space. On the other Hand, the Air being made more hot, the Water will come down from \mathbf{F} towards L ; for the Air FH being rarified takes up more Space.

AND the Degrees of increafe and decreafe of Heat and Cold may be known, if you divide the Line FA into a certain Number of Parts.

OR without a Veffel underneath, let the Glafs LH have, at the end L, a hollow Ball of Glafs, with a fmall Hole on one Side, filled with Water, Ff_{3} and and the Degrees of Heat and Cold will be fhown by the Rifing and Falling of the Water（s）．

PROPOSITION X．

A clear Air may be fo rarified by a great Fire as to take up feventy times a greater Space than before， and fo condenfed in a Wind－Gun as to take up only the fixtieth fart of the former Space；but the Heat of the Sun will not rarify fo much，nor the ordi－ rary Culd condense fo mucb．

THIS is proved from the ⿸厂⿰亻⿱丶⿻工二十⿴⿱冂一⿰丨丨丁口 it be taken when white with Heat，it will then receive thirteen Ounces of Water；but the fame Etolipile when cold，or in it＇s natural State，will take thirteen and half a Dram，and that Part which contains the half Dram is the Difference of the two Spaces，and is almoft the feventieth Part of the whole Cavity of the Eolipile．
（s）This kind of Thermome－ ter was thought to fhew the Heat or Coldnefs of the Air， with fufficient Accuracy before the difcovery of the Barome－ ter．But after it was found that the Air was not of one conftant Weight，but differed at different Times，it was re－ marked，that the Water in－ cluded in the Glafs Neck，ac－ cording as the Weight of the Airincreafed or diminifhed，and reeking upon the Water con－ zained in the Veffel，mur alia afcend or defcend tho＇the De－ gree of Heat fhould remain the fame．Whence the Structure of the Thermometer was necef． farily altered．Mof at prefent ufe a fimilar Tube A B C（Fig． 27．）ending in a Ball at the

Bottom．This they fill to a pro－ per Height with Spirit of Wine， fuppofe to B，then clofe the In－ frument by melting it＇s Extre－ mity A at the Flame of a Lamp． The Spirit of Wine，being now rarified or condenfed，according to the differen：Temperature of the Air，marks，by ft＇s afcent or defcent in the Tube，the greater or lefs Degree of Hear．In making this Thermometer they obferve fuch a Proportion in the Capacity of the Ball to the Stem，that the Spirit of Wine may neither fill the whole Tube in the greateft Degree of Heat， nor all fink into the Ball ip the greateft Cold．

Iurin＇s Apperadix．
$P R O$
PROPOSITION XI.

Wby in Places of the Frigid Zone, when they bave not the Sun rijing and jetting, the Air is Jome Days clear, but grofs and cloudy for the moft part.

THE Caufe of that thick Cloudinefs, which is almoft conftant, is, the fmall Heat of the fubterraneous Earth, or that comes from the Sun, or Moon, (which remains for feveral Days and Nights above the Horizon whilft the Sun is below,) and other Stars; which Heat, being weak, is not able to difpel the Cloud; and fome Days being clear, is not from the grofs Vapours being made fmall, but from their falling down on the Earth, or being driven away by the Wind.

PROPOSITION XII.

Why fometimes in the greatef Cold in Winter the Air is fubtile and clear; whereas Cold condenfes and contraits the Air.

COLD is twofold, moderate and exceffive: a moderate Cold does not make the Air clear but cloudy, for by the fmall Heat that is joined with the Cold, the Vapours are raifed but not difpelled; but a vehement exceffive Cold renders the Air clear, for two Reafons; I. It makes the grofs Vapours in the Air more grofs; and fo they fall down, and the Air is thus cleared. 2. Becaufe the Pores of the Earth are fhut up, and the Vapours are not exhaled from it, that render the Air turbid and cloudy. The Sea indeed is not frozen with Cold; yet it's Particles are made fo thick with Cold, that it doth not fo readily fend out Exhalations, tho' it doth a great many, being of another Nature than the Earth.

PROPOSITION XIII.

Wby wben we look tbro' the Air in an borizontal Line it appears tbicker and more cloudy tban tbat above, or that in which we breathe.

THE Caufe is twofold; the firf becaufe the A ir near the Horizon is really more cloudy; the other is a deceit in our Sight; for the Eye takes in the Diftances of the Parts of an Arch in the Horizon, by very fmall Angles; as it does the Diftances of Pillars in a long Row: and as we judge thofe that are diftant to be near, fo the diftant Particles of Air are judged to be joined clofe; but the Diftance of the Yarticles of Air that is higher, the Eye fees under great Angles and apprehends them the better.

THE fame is the Caufe why the Air at a Diftance appears to be cloudy ; but when we approach to it, it does not feem fo cloudy.
PROPOSITION XIV.

Whetber the Atmofpbere or Air be always of the fame Heigbt in all Places ; or if it's Figure be Spherical.

THAT it is not of the fame but of very different Heights, appears in that the Sun is only vertical to one Place at once, and fends it's Rays obliquely to other Places: and fo more weakly the more they are remote from the Sun, or the nearer the Poles: and therefore the power of the Sun is different in different Places, and muft raife the Vapours differently; they are higheft directly under the Sun, and loweft in the oppofite Point, and in a middle Height at the Pole, fo that the Air is of an oval Figure.

YET the contrary, that the Height is the fame in all Places, feems more probable; tho' the Vapours are more elevated in fome Places than others ; yet becaufe the Air is fluid and by it's Gravity tends downward, therefore the higher Parts prefs thofe below; and thofe again others fideways, 'till all the Parts come to be alike high ; and thus it's fpherical Figure is proved the fame way as that of the Water is proved by Arcbimedes, Chap. xiii. for the Suppofitions here are the fame as there; which if falfe the Demonftration fails.

DES Cartes alfo makes it oval, for a particular Reafon; fee Chap. xiv.

PROPOSITION XV.

The Condenfation or Rarifaztion of the Air dotb not alter it's Heigbt.

FOR not the whole, but a part only is condenfed or rarified, fometimes here, fometimes there; which doth not alter the Height in one Place more than another: only there may be a greater Condenfation in one Part than in another : which can alter the Height but very little.

> PROPOSITION XVI.

The Altitude of the Atmospbere or Air is not only the Jame in different Places, but is always the fame botb Summer and Winter.

FOR tho' the Heat in our Summer doth attenuate our Air, and raife it more than in Winter, yet becaufe then there is Winter in another Place, the Air there is lefs raifed, and therefore a Part of our Air will flow there: and when our Air is low by the Cold, the Air of another Place that is hotter diftant from the Center.

A N D the fame may be faid as to Day and Night; for while at Night it is condenfed with us, and is low, it rarifies more in another Place, and moves to our Air'till it makes a fpherical Figure; and becaule all things are every where equal, the Height will continue the fame every where; and tho' it may rarify and condenfe more in one Place and Time than another, yet the Difference being fmall will not much alter the Altitude; as we faid in the preceding Propofition.
T.HE fame may be faid of the Clouds, Rain, or Vapours, in our or another Place, as from thefe a greater or lefs Altitude feems to arife: but I anfwer, there is fcarce any time in which it doth not rain, or a Cloud fall, in fome Place or other ; and therefore while it rains in one Place the Air becomes no lefs than it was, becaufe it rained before in another Place, and fo it comes all to the fame thing, and the quantity of the Air is neither encreafed nor diminifhed.

PROPOSITION. XVII.

The colder the Air is, the tbicker: and therefore it is for the moft part colder in Winter tban Summer (in any particular Place), and likerwife in the Night more than in the Day, and the grofs Exbalations from the Water in the Winter-time, increafe that Denfity, especially in the Evening and Morning.

THE Truth of the Propofition is clear from the preceding; nor is it any Objection, that a Part of the hotter Air moves where it is colder, and more low; for it is not that but fome neighbour. ing Air that moves to the Place, becaufe of the continual Protrufion, or Preflure ; or tho' it came itfelf,

CH Ap. 19. of Univerfal Geograpby. itfelf, yet by coming there, it would become cold.

PROPOSITION XVIII.

There are commonly reckoned tbree Regions of the Air, of which that is in the middle where the Snow, Hail, and Rain are formed ; the firt is tbat in which we live reaching to the middle Region; the third is from the middle Region to the utmoft Bounds of the Atmofpbere, even to the fiery Region, as the Ariftotelians Speak.

THE middle Region is colder than the firft and third, which are counted hotter: becaufe the third contains more fubtile, fiery, and fulphureous Exhalations which go up into it above the Place of the Particles of Water, or are thruft there being lighter. The Arifotelians fay 'tis hotter becaufe nearer to the fiery Sphere, and colder than the firft ; becaufe the Rays falling, join with thofe that are reflected from the Earth, and fo double the Heat. Moreover the Particles of the fubterraneous Fire coming out of the Earth are diffipated there in the lower Region ; and the middle Region being without all thefe Advantages muft needs be colder.
PROPOSITION XIX.

The nearer a Place is to the Pole, or the more difant from the Place where the Sun is vertical, the Place of the Air in whicb Rair, Snow, and Hail is formed is the nearer the Earth.

THE Caufe is, that the Rays fall more obliquely on the Places about the Poles than on thofe about the Equator, and therefore being refracted are far removed from the Perpendicular, and thus tract into lefs Room, and by joining form the watry Meteors.

COROLLARY.

THE Superficies of the firft Region is oval, or rather elliptical, or like a Spheriod, bulging out under the Torrid Zone.

PROPOSITION XX.

The nearer a Place is to the Pole, the third Region (in which the more subtile and fulphureous parts move $u p$ and down) begins further from the Earth.

FOR that Part of the Atmofphere which is nearer the Pole contains fewer fubtile and fulphureous Particles; for the Sun brings fewer of them thither from the Earth. And a left Number being raifed there than in the Temperate Zone, and fewer in the Temperate than in the Torrid Zone, and the utmolt Bounds of the third Region equally diftant from the Earth's Center byPropofition 16 ; therefore the beginning of that Region under the Frigid Zone, is further from the Earth's Center than it's beginming in the Torrid or Temperate Zone.
COROLLARY.

T' HE Superficies bounding the fecond Region is as a Spheroid bulging in the Frigid Zone. Thee are all to be flown to Students by a Diagram.
PROPOSITION XXI.

The Rays of the Sun, Moon, and Stars, do not come directly from the Heavens throe' the Air, to

Снар. 19. of Univerfal Geography.

 our Eyes, but turn a little afide from the firait Courfe, as foon as they enter the Air ; which is called, by Writers in Optics, their RefraElion.THAT Part of Optics which treats of the Refraction of Light is very fine. Experience teftifies, that the Rays coming from any Object out of one Medium into another more grofs, or more fine, do refract or turn afide: the Thing is plain from a common Experiment. Take a Veffel, to the Bottom of which fix a Globe of Gold, or Brafs, or Peice of Money, then go from the Veffel 'till you cannot fee the Money for the Sides of the Veffel, then fill the Veffel with Water and you will fee the Money; which fhews, that the Rays coming from the Money as they go from the Water into the Air turn from their Courfe, before they can come to the Eye; which is called Refraition, becaufe the Line is broke, as it were, coming from Water to Air.

THUS, Let the Center of the Earth be T, (Fig. 28) and L the Eye on it's Surface, and $d r f$ the Surface of the Atmofphere, or Air; and therefore no Ray can come to the Eye at L, which is under $\mathrm{L} f g$ for the Rays below would fall on the rifing Part of the Earth Lo; and thụs no Star can appear by a ftrait Ray 'till it come to the horizontal Line Lfg, but the Stars appear before that, while they are under Lg : for Example in S , from which no Ray can come ftrait to the Eye, but muft be refracted; i.e. the Line or Ray $S f$ coming into a thicker Medium at S, on the Atmofphere, is refracted and runs on in the Line $f \mathrm{~L}$, tho' it was directed to n, and thus the Star appears before it comes to the horizontal Line Lfg.

TH US the Star in f is not feen by the direct Ray $\int r$, but by the refracted Ray r L, tho' it was directed at the firft to m; and therefore the Star at \int appears higher by the Refraction than it really is, it's Height being the Angle $r L g$ or the Arch $x g$, as if it were in the Point x when it is really in f.

THIS being the Law of Refraction, that the Rays going into a groffer Medium, turn to the perpendicular at the Point of Incidence, as here f is the Point of Incidence, and T f the Perpendiculat drawn thro' f, thro' the Superficies $d r f$; therefore the Ray $S f n$ will be refracted towards $f \mathrm{~T}$ that from $f n$ it may become $f \mathrm{~L}$.

AND thus the Line or Ray $r m$ becomes $r \mathrm{~L}$: but the contrary happens when the Ray goes into a firie Medium, for then it goes from the Perpendicular.

BESIDE it is the Nature of Refraction, that the Rays falling perpendicularly on the Superficies of another Medium, are not refracted, but only thofe that fall obliquely, and thofe are the more refracted the more obliquely they fall. Thus the Rays $S T, \int T, M d T$ being perpendicular to the Supetficies are not refracted, but the Rays $S f, \int r$ that fall obliquely are, and $S f$ more than $f r$.

F R OM whence it alfo follows, and is manifeft by Experience, that the nearer the Stars are to the Horizon, their Rays are the more refracted, and the higher they are, the lefs; and Aftronomers have found, that when a Star is twenty Degrees high, the Refraction is infenfible, tho' there is ftill a fmall Refraction.

A N D Mathematicians, fkilled in Optics, have by 'Obfervations found the Laws of Refraction of all oblique Rays, and that in every Medium there is a conftant fixed Proportion between the Sine of the Angle of Incidence and of the refracted Angle (i.e.) between the Angle if T and $\mathrm{L} f \mathrm{~T}$, the Angle $n f$ L being the Angle of Refraction; and fo in the Reffaction of the Ray $\int \mathrm{rm}$. Therefore the fame Proportion that is between the Sine of the fame is between the Sine of the Angle Tr m and the Sine of TrL. Therefore if the Quantity of Refraction be known by Obfervation at one Elevation of a Star, the Quantity of Refraction for all other Elevations may be known (t).

PRO.

(t) It is of great Moment in the making of exact Altronomical Obfervations, to know the Refraction which the Rays of Light fuffer in paffing thro' our Atmofphere. This was determined by the learned Mr Lowtborp, by an Experiment made before the Rojal Saciety, and fhewn to be as the Sine of the Angle of Incidence and Refraction. See Pbilof. Tranf. No 257. But this Experiment being queftioned by the Royal Alademy of Sciences at Paris, who had not the fame Succefs, [fee their Memoirs for the Year 1700.] Mr Lowthorp repeated it at the Requelt of the Rogal Society, and Mr Hauksbee allo performed it with much greater Accuracy. See Hauksbee's Pbyfico Mecbanical Experimentsp. 175 and found the Proportion betwixt the Angle of Incidence and Refraction was as 1000000 to 999736; fo that the refractive Power of the Air to bend a Ray of Light from it's ftrait Courfe in coming out of a Vacuum, or the Difference of the faid Sines, proportionable to theSines themfelves, is 2641000000 Parts. And the Experiment being fe veral Times repeated, he found that this refractive Power exactly anfwered to the Proportion of the different Deafitics of
the Air thro' which the Ray paffed, fo as to be twice or thrice as large when the Air had twice or thrice the Denfity. Whence we have an eafy Rule for finding the Refraction in any Time or Place, as being always correfpondent to the Denfity of the Air. But the Denfity of the Air may be meafured by a joint Obiervation of the Barometer and Thermometer. For as the Spaces, poffeffed by the Air, are reciprocally proportional to the Weights that comprefs ic [fee the Note upon Propofition 7. above] and it's Denfity reciprocally as the Space it poffeffes, the Denfity of the Air mult be proportional to the Weight that compreffes it, or the Weight of the incumbent Atmofphere ; that is, the Height of the Quickfilver in the Barometer. And this will be the Cale if the Heat of the Air remain the fame. But if the Height of the Barometer be known, the Denfity of the Air is reciprocally proportional to the Spaces marked againt the Degrees of the Thermometer in the Tube above. [See the Note to Propofition 8.] Whence it follows, according to the known Theorem of compounding Ratios, that the Denfity of

PROPOSITION XXII.

The Atmofphere or Air caufes the Sun and other Stars to appear before they come to the Horizon at rifing, or after tbey are paffed it, at fetting; and appear bigber tban they really are, wbile they are under twenty Degrees of Elevation.

T HE Caufe is fufficiently explained in the preceding Propofition. We may add fome Experiments or natural Phænomena. When the Dutch wintered in Nova Zembla, the Sun appeared to them fixteen Days before it came to the Horizon, that is, when usider the Horizon four Degrees, and that in a clear Sky; and famous Aftronomers have
the Air is always as the direct Ratio of the Heights of the Barometer, compounded with the reciprocal Ratio of the Spaces marked againft the Degrees of the Thermometer.

- For Example, at the time - the Experiment was made,
- the Height of the Barometer
- was 29 Inches, $7 \frac{1}{2}$ decimal
- Parts, and the Thermometer
- at 60 , over againft which
- the Space of 137 Parts is
- marked ; Then, it mult be
- enquired, what the Denfity
- of the Air is, when the Ba-
- rometer is up at 30 Inches,

6 and the Thermometer 50

- degr. below the Line of Frecz-
- ing, then the Column of Air

6 in the former Experiments

- will not poffefs above the
- Space of 126 Parts ; fo that
- the Denfity of the Air fought
- for, will be to the Denfity
- of the Air at the Time the
- Experiment was made, as - 30×137, to $29,7 \frac{1}{2} \times 126$; - or as 4110 to 3748.5 .

And hence may be underflood the Reafon why the Dutch who wintered in Nova Zembla, found fo great a Refraction. See Seat. vi. Cbap. 19. Prop. 30. For hence we underftand, according to the Obfervations of the Frencb and others, (fee Hift. de I Acad. Scien. 1700, 1706, and La Mefure de la Terre) that the Refractions are greater towards the Poles than near the Equator, and greater in the fame Place in the Morning or Evening than at Noon; tho' there be no Difference perceived in the Height of the Barometer. For all this feems to proceed from the fame Caufe viz. the greater Denfity of the Air by reafon of Cold.

Iurin's Appendix.

Chap. 19. of Univerfal Geography. 449 found, with Tycbo, that, with us, when the Air is clear in the Morning the Sun is feen elevated above the Horizon thirty four Minutes, while 'tis yet under the Horizon and it's Limb but juft touching it, and as long in the Evening.

THUS the Virgin's Spike appears when 'tis thirty two Minutes under the Horizon, for it feems to rife when the Lion's Tail is thirty four Degrees, thirty Minutes high, and on the fame Point. But thefe two Stars are diftant thirty five Degrees two Minutes.
PROPOSITION XXIII.

The groffer the Almofpbere is, the Refraction is the greater, (otber things being alike) i. e. tbere being the fame Elevation of the Star, and the fame Heigbt of the Air.

THUS the Angle $n f$ L, (Fig. 28.) which is the Angle of Refraction, is the greater, or the refracted Ray $f \mathbf{L}$ comes nearer to $f \mathrm{~T}$ the thicker the Atmofphere is, which thofe killed in Optics have found in all kinds of Mediums.

PROPOSITION XXIV.

The groffer the Air is, the more the Star is under the Horizon wben it firft appears.

THE Ray Lf(Fig. 28.) is refracted and firft fhows the Star, and $\mathrm{L} f \mathrm{~T}$ is the refracted Angle; and $S f n$ being the incident Ray, $n f \mathrm{~T}$ will be the Angle of Incidence, and $n f \mathrm{~L}$ the Refraction.

LET us then fuppofe the Air $f d \mathrm{LO}$ to be groffer than when it made the Refraction $n f \mathrm{~L}$, it will thus make the Angle of Refraction greater, viz. of L , and the incident Ray will be $\mathrm{K} f$ e. There-b VOL.I.

G g
fore fracted, that the refracted $f \mathrm{~L}$ may fhew the Star; but when the Air was not fo grofs the Star was firft feen when in S.

PROPOSITION XXV.

The lower the Air, the Star is the more under the Horizon when it firft appears (otber tbings being alike) i. e. there being the fame Clearnefs or Tbicknefs in the Air, or is feen the fooner or later before it rije.

FOR, fuppofing the Air low, the refracted Angle T $f \mathrm{~L}$ (Fig. 28.) will be greater ; for Example, if the Altitude of the Air be T_{4} the Angle refracted (according to the firft Ray that comes to L) will be $\mathrm{T}_{4} \mathrm{~L}$. Let then 4,9 be drawn parallel with $f n$; then, by the Hypothefis in Prop. xxi. as the Sine of one refracted Angle $\mathrm{T} f \mathrm{~L}$ is to the Sine of another refracted Angle $\mathrm{T}_{4} \mathrm{~L}$, (for the Air differs only in height by fuppofition and not in thicknefs) fo is the Sine of the Angle of Incidence $n f T$ to the Sine of the Angle of Incidence 3, 4, T, for the refracted Ray 4, L, and the incident Ray 3, 4, 6. But the Sine of the Angle T 4 L hath to the Sine T 49 , the fame Proportion which the Sine of $\mathrm{T} f \mathrm{~L}$ hath to $\mathrm{T} f n$, as is eafily demonftrated by the Figure for this propofition. Therefore the Sine of the Angle T, 4, L hath a greater Proportion to the Sine of T, 4, 9, than the fame Sine T 4 L hath to the Sine $T, 4,3$; therefore the Sine $T 4,9$ is lefs than the Sine T, 4, 3; and fo the Angle T 4, 3 is greater than the Angle T, 4, 9, and 3, 4, L than 9, 4, L, that is, than $n f L$; and therefore the Line 4, 3 drawn out, viz. 3, 4, 6 the incident Ray for the refracted one 4 , L will fall under $S f$, and the

Снар. 19. of Univerfal Geograpby.

Star will be in 6 to caufe the refracted Ray ${ }_{4}$ L; and thus 'tis lower than when in S where the Altitude of the Air was $\mathrm{T} f$.

PROPOSITION XXVI.

A Star may bave a different Refraction even in the fame Place, provided the Denjity of Air be different.

THE Problem is better put thus: The Altitude of a Star and it's Refraction being given, viz. that which is made at a given Height; and there being given likerwife anotber Altitude of the Air ; to find the Denjity of the Air requifite to cause the fame Refration in that Allitude as was in the otber. For Example, in the Altitude of the Air T f, (Fig. 28.) the Ray $S f$ makes the Angle of Refraction $n f \mathrm{~L}$; if then there be another Altitude of the Air T 4, and yet the Refraction of the Star S in the fame Place of the incident Ray 6, 4 which is almoft parallel with $S f$, becaufe of the great Diftance; 'tis afked whether the Refraction 3, 4, L may be equal to the Refraction $n f L$; and if it may, whether or no muft the other Air be thicker or thinner, and in what Proportion?

I anfwer it may be, if the other given Altitude of the Air be greater than the former $\mathrm{T} f$, the Denfity or Thicknefs of this fecond Air muft be greater; but if the other given Altitude be lefs as $T, 4$, then the Thicknefs of the fecond Air muft be lefs, or have a greater Rarefaction in it, and how much that mult be is known from this.

1. FIN D the Angle T9 L (having T 4 and $T \mathrm{~L}$) and $\mathrm{T} f \mathrm{~L}$, then the Sine of the Angle T 4 L , and the Sine of the Angle T 43 (which is the Angle of Incidence of the Ray 3, 4, 6) thence is found the Proportion of the Denfity of the Air, to that of the Ethereal Matter, from which the inci- how much more denfe or rare the Air of the leffer Height fhould be.

Y ET properly fpeaking 'tis not the fame Refraction, for the incident Rays are not equally elevated above the Superficies of the Medium's.

PROPOSITION XXVII.

If the Air of one Place be botb thicker and lower than the Air of another, the Sun, and the reft of the Stars, will be the more depreffed, under the Horizon of the former Place, when theyfirft begin to appear than in the latter Place.

THE Demonftration of this Propofition is manifeft from Prop. xxv. and xxvi; and it alfo thence follows, that if the Air be lower and groffer in Places of the Frigid Zone than in the Temperate and Torrid Zone, the Sun may be feen there longer before the rifing and longer after the fetting, than in other Places that are higher and more fubtile; for when 'tis more depreffed under the Horizon, and comes to it more obliquely and more flowly as in the Frigid Zone, it muft then be feen much fooner in the Frigid than in the Torrid Zone. But 'tis doubtful whether the Air be lower in the Frigid Zone; and tho' the Sun be feen fooner before it rife, whether that may be only on Account of the groffnefs of the Air; of which afterward.

Chap. 19. of Univerfal Geography.

PROPOSITION XXVIII.

If the Air of one Place be groffer and bigber tban that of anotber; it may be on account of the greater Tbicknefs of the Air in one Place tban the otber, tbat they do not Jee the Stars before they rije, when they are a good way under the Horizon. And fuch alfo may be the great Thicknefs of the Air tbat thereby they Shall fee the Stars before they rife, tho' they bave the Jame Deprefion: Yea the Air may be fo tbick as to Jew the Stars when in a mucb greater Deprefion under the Horizon of one Place tban of another.

Y E A the thicknefs of the Air will caufe a much greater Depreffion than the lownefs of the Air; and for the Refractions in Nova Zembla there is required a great Height of the Air with fome thicknefs.

PROPOSITION XXIX.

It is impollible that the Refractions of a Star in different Altitudes fhould be equal (if the tbickness of the Air be the fame) to the Refractions of the Jame Star in the fame Altitudes, if the Air be eitber bigber or lower, or tbicker or tbinner.

W E fhewed, in the preceding Propofition, that if in the Altitude of the Air Tf, (Fig. 28.) the incident Ray Sfn make the Refraction $n f L$, the Ray 6, 4, which, becaufe of the great Diftance, may be reckoned parallel with $S f$, the Rays from the fame Point, we fay the Ray 6,4 may, in another Altitude of the Air, as T 4 , make the fame Refraction 34 L equal to $n f \mathrm{~L}$, if the Air $40 \mathrm{~L} e$ be thinner than the Air foL d; now 'tis demanded if

Gg 3
that fame Refraction, whether in another Alitude -as S , and in the fame Atmofphere $f r d \mathrm{Lo}$ and $4 e \mathrm{~L} 0$, the Refraction may be again equal, or the fame $m r$ L? And I fay that it cannot be.
FOR if a Circle be defrribed with the Center T bounding the Air of another Altitude cutting $\mathrm{L} r$ in 2 , then 2 L will be the refracted Ray in the other Air, by which the Star \int is feen; for the Ray 2 L mutt be the fame with $r \mathrm{~L}$, as the fame apparent Altitude of the Star $x g$ is Yuppofed, or the Angle $r \mathrm{~L} f$. Moreover, let the incident Ray, anfwering that refracted one, be drawn thro' 2 as $72 w$, which will be parallel with $f r m$, if the Refraction $\mathrm{L} 2 w$ were equal to the Refraction Lrm ; for if T 2 be alfo drawn, T 2 w will be the Angle of Incidence, and T 2 L the Angle refracted, and $w_{2} \mathrm{~L}$ the Refraction.

THEREFORE as the Sine of 34 T to the Sine $\mathrm{L}_{4} \mathrm{~T}$, fo is the Sine of $w_{2} \mathrm{~T}$ to the Sine of L 2 T.
A ND as the Sine of $n f \mathrm{~T}$ to the Sine of $\mathrm{L} f \mathrm{~T}$, fo is the Sine of $m r$, to the Sine of $\mathrm{L} r \mathrm{~T}$, and 34 L being equal to $n f \mathrm{~L}$, the Angle w 2 T is not equal to $m r \mathrm{~L}$, or $w 2$ is not parallel with $m r$. This requires a longer Demonftration than can be given here, as belonging to Geometry, which will be evident , from the following Aleebraic Work.

PROPOSITION XXX.

Having in two Artitudes of a Slar observed the Refrations, to find from tbence tbe Allitude of the Air, and the Proportion of their Denfities, or the Lazu of Refraciion in that dir.

THE

Chap. 19. of Univerfal Geography.
THE Refraction of a Star is equal to the Difference between the obferved Altitude, and the true Altitude, which is known by Calculation, and thus Refractions are eafily known. Then to our purpofe:

IF it were to be folved Geometrically, it would be brought to this Problem :

LET the Star be in S (Fig. 29.) fending out the Ray $S f$, and the Refraction $n f \mathrm{~L}$.

AND in the Altitude $\int g$ it's Refraction $m r$ L.
THEREFORE in the Circle $d r f$, whofe Center is T, there is given T L the Semidiameter of the Earth, and drawing $\mathrm{T} r, \mathrm{~T} f, \mathrm{~L} f, \mathrm{~L} r$, the Angles $\mathrm{T} l f$ and T L r may be had; the latter being made of the Star's Altitude, and a right Angle, and the Angles $n f \mathrm{~L}$ and $m r \mathrm{~L}$ are given; and we know that the Proportion of the Sine of the Angle $n f \mathrm{~T}$ to $\mathrm{L} f \mathrm{~T}$ is the fame as the Sine of the Angle $m r \mathrm{~T}$ to the Sine of $\mathrm{L} r \mathrm{~T}$. From there to find the Semidiameter $\mathrm{T} f$ or $\mathrm{T} r$, and the Proportion of the Sine of $n f T$ to the Sine LfT, or to find the Angle T $f \mathrm{~L}$. Which will give the Proportion of the Sines.

T H E Algebraic Solution is fomething difficult, but the common fynthetic way requires many Lemmata to be premifed, which the former Solution doth not. Let us therefore produce the analytic Solution, to fhew that it will confirm the preceding Propofition. Let the Sine of the right Angle TLF, or

The Radius be b and Sine TLre Sine $n f L \quad d$ $\begin{array}{ll}\text { Sine comp. } & g \\ \text { Sine } m r \mathrm{~L} & b\end{array}$ Sine comp. k Sme T $f \mathrm{~L}$

Let us find the Angle LfT; for this being known TF, and all the reft are known.

FIRST, becaufe there is given the Sine of both the Angles $\mathrm{T} f \mathrm{~L}$ and $\mathrm{L} f n$, the Sine of the whole Angle $n f \mathrm{~T}$ is given, viz. if the Sine of each Angle be multiplied into the Co-Sine of the other, and the Sum of their Products divided by the Radius. Thus the Sine of the Angle $n f T$ will be $\frac{a g+d \sqrt{ } \overline{b b-a a}}{b}$.

MOREOVER, feeing the Sine TLf is to the Sine $\mathrm{T} f \mathrm{~L}$ (So is $\mathrm{T} f$ to TL or $\mathrm{T} r$ to TL) fo is the Sine TLr to the Sine TrL; that Sine $\operatorname{Tr} \mathrm{L}$ will be $\frac{c a}{b}$. And feeing there is given alfo the Sine MrL, let there be found, according to the former Rule, the Sine of the whole $m r T$, which is $\frac{k c a+b \sqrt{b 4-c c a a}}{b b}$. Thus we have the Sine of four Angles LfT, $n f \mathrm{~T}, \mathrm{~L} r \mathrm{~T}, m r \mathrm{~T}$, for we know they are proportional fince as a : $\frac{a g+d \sqrt{b b-a a}}{b}:: \frac{c a}{b}: \frac{k c a+b \sqrt{b 4-c c a a}}{b b}$.
And therefore $\operatorname{cga}+c d \sqrt{b b-a a}=k c a+b$ $\sqrt{b 4-c c a a}$; or if $\frac{b}{c c}$ be $=m m$, and $g-k=n$; then, after due Reduction, it will be $n a+d$ $\sqrt{b b-a a}=b \sqrt{m m-a a}$. And both Sides fquared $b b m m-b b a a-n n a a-d d b b+d^{2} a^{2}=$ $2 n a d \sqrt{b b-a a}$. For p^{4} write $b b m m-d d b b$, and $q q$ for $d d-b b-n n$, and fquare again $p^{4}+q q a a=2 n a d \sqrt{b b-a a}$, and it will be $p^{8}+q a^{4}+2 p^{4} q q a a=4 n n b b d d a a-4 n n d d a^{4}$. And dividing by $4 n d d-q^{4}$, and fubftituting other

Chap. 19. of Univerfal Geography. 457 Sines $a^{4}=r r a a-s 4$. And $a a={ }_{2}^{1} r r+$ $\sqrt{\frac{1}{4} r^{4}-S^{4}}$ or $a=\sqrt{\frac{1}{4} r^{4}}+\sqrt{\frac{1}{4} r^{4}-S^{4}}$.

FR OM this Equation it appears that the Problem is determined, and that a, which is the Sine of the Angle T $f L$, may be found by extracting the fquare Root. And from thence 'tis found, that two Refractions are fufficient to find the A1titude of the Air T F, and the Rule of Proportion between them; which I take Notice of becaufe I fee Kepler, in his Epitome of Aftronomy $p .65$. takes three Refractions, tho' he did not try this Method himfelf.

THE Refolution of this Problem may be alfo had by the Rule of Pofition, by affuming $\mathrm{T} f$ in a certain Proportion to T L, and trying if, by that Affumption, the Sines of the four Angles T $f \mathrm{~L}, \mathrm{~T} f n, \operatorname{Tr} r \mathrm{~L}, \mathrm{~T} r m$ will be proportional.

THEREFORE, in the Triangle $f \mathrm{LT}$, let there be found the Angle $\mathrm{T} f \mathrm{~L}$ from having $f \mathrm{~T}$, T L , and TLf. And likewife in the Triangle T L r, find the Angle TrL from having Tr, TL, and TLr.

LET there be then taken the Sine of the Angles TfL, Tfn, Tr L, Trm; and let there be a fourth Proportional taken to the Sines $\mathrm{T} f \mathrm{~L}$, $\mathrm{T} f n, \mathrm{~T} r \mathrm{~L}$. And if $\mathbf{T} r m$ be equal to this fourth Proportional, then the affumed Height of the Air Tf will be juft; but if the Sine Trmbe greater than the fourth Proportional, then T f murt be taken lefs; but if lefs, then it muft be taken more; and fo always 'till they become equal,

$$
E X A M P L E
$$

SUPPOSE the Virgin's spike, or any other Star, or the Sun, to be feen in the Horizon Lf when 32 Minutes under it, as in S; thus the Refraction $n f \mathrm{~L}$ is 32 .

THEN when the Sun hath the apparent Altitude $g x$ I degr. 22 min. or the true Altitude 1 degr. the Refraction $\mathrm{L} r m$ is 22 min .
T HE Semidiameter T L is 860 Gernan Miles. But fuppofe it 10000 , and the Altitude of to be 5 of there Parts, viz. $\frac{5}{10000}$ or $\frac{1}{2000}$ of the Semidiameter T L ; that is, abont $\frac{3}{\circ}$ of a Mile.

THEREFORE in the Triangle TLf, the Radius being 10,000,000.
AS $f \mathrm{~T}$ to $\mathrm{T} L$, fo is the Sine $T L f$ to the Sine $T f$ L.

2001: $2000:: 10,000,000: 9,995,992$, the Sine of 88 degr. 22 min. 40 Jec.

A N D thus $\mathrm{T} f n$ will be 88 deg. 54 min .40 fec . whofe Sine is $9,998,200$.
A G AIIT, in the Triangle T r L.
AS Tr:TL, fo is the Sine of the Angle T L r to the Sine $\mathrm{T} r \mathrm{~L}$.
$2001: 2000:: 9,997,155: 9,992,159$, the Sine of 87 degr. 43 min .40 fec.

THEREFORE Trm is 88 deg . 5 min . 40 fec. whofe Sine is $9,994,500$.

THEN let there be found a fourth Proportional to the Sines of $\mathrm{T} f \mathrm{~L}, \mathrm{~T} f n, \mathrm{~T} r \mathrm{~L}$.
AS Tf $\mathrm{L}: \mathrm{T} f n:: \mathrm{T} r \mathrm{~L}$.
AS 9,995,992 : 9,998,200: : 9,992,159: 9,994,366.

AN D with that fourth Number compare the Sine of the Angle Tr m, which is $9,994,500$.

AND we find that this Sine is very near to that fourth Number; and therefore the affumed Altitude of the Air, viz. $\frac{3}{8}$ of a Mile, is not far from the Truth. And if any one defire it more accurately, he may affume another Altitude, and work the fame way, 'till the Sine of $\mathrm{T} r^{m}$ be nearer nearer to the fourth Proportional; or, by the Rule of Falfe, having it twice too little, you may find the true Altitude as near as poffible, for it cannot be found perfectly true; becaufe a fmall Difference in the Sines changes it very much if it be but half a Minute: and befides this the Canon of Sines muft be very exact.

W E conclude therefore, that the Height of the Air is about the 2000 part of the Semidiameter of the Earth, which is $1,633,190$ Perches; and the Altitude of the Air 816 Perches, one Perch being twelve Rbinlandifh Feet: but 'tis better allowed to be half a German Mile, for the Refraction L $f n$ was found, by $T_{j} c h o$, to be greater, and may be thirty fix or forty eight Minutes; and then the Height of the Air will be one Mile.

THE Height of the Air being known, there is alfo known the Proportion of the Denfity of the Air to that of the Ethereal Matter, or the Law of Refraction, in that Air making fuch Refractions in fuch Altitudes, i.e. the Proportion of the Sine $\mathrm{T} f \mathrm{~L}$ to the Sine $\mathrm{T} f n$, before found, is the Proportion fought.

A S 9,995,992 to 9,998,200. And the Reafon why thefe Refractions are fo fmall is, becaufe we fuppofed a clear Air, not much differing from the Ethereal Matter in Denfity ; as fome have imagined.

MOREOVER, whether the Altitude of the Air be the fame in all Places and Times may be known; if we ufe the fame way two Refractions at two Altitudes in a different Air and Time. And that Students may underftand thefe Secrets of Nature, I have, that they may try a Calculation, fet down Examples from Tycho's Obfervations, who obferved the Refractions of the Sun and Moon for every Degree of their Height; and becaufe they differ from the Obfervations of Lanßerg, made made in a different Air (if made at all), I will alfo add them.

$L A N S B E R G$ fets down the fame Refractions for the Sun and Moon; and $T_{y c b o}$ makes a fmall Difference near the Horizon, thofe of the Sun greater, and at the fifth Degree equal ; and afterward the Moon's Refractions fomewhat greater than thofe of the Sun: I confefs I do not fee why, except it be attributed to the weaknefs of the Moon's Light. And moreover, Tycbo omitted Seconds, which are not to be neglected, if they approach near fixty, for they are of ufe in calculating the Height of the Air. But as for the Refractions of all the Stars they are equal, or very little different, if in one Air; but if the Air be groffer, the Refractions are greater. For Example, the Dutch, at Nova Zembla, found in Winter that the Sun began to appear after a Night of fome Months, when it was 4 Degr. under the Horizon, at leaft it's Limb ; therefore the Refraction $m f L$ is $4 \operatorname{deg} r .30 \mathrm{~min}$. the Caufe whereof none have fufficiently explained.

A N D then, when it was 3 degr. 45 min . under the Horizon, they faw it elevated above the Horizon 30 min . viz. it's upper Limb; therefore the Refraction $m r L$ (for we mult conceive $m r s$ to fall under the Horizon, or $r \mathrm{Lg}$ to be 30 min .) will be 4 degr. 15 min . and $r \mathrm{LT} 90$ degr. 30 min . From this may be found the Altitude of the Air $L f$, and the Denfity of the Air at Nova Zembla, which was clear at the time of Obfervation. And the Altitude of the Air is thereby found much greater, almoft two Miles; nor will the fuppofition of a greater thicknefs in the Air help the Matter, as we fhall fhew in the following Propofition; becaufe the Angle T f L cannot be greater than $85 \operatorname{degr}$. 30 min . (if $n f \mathrm{~L}$ be 4 degr. 30 min.) tho' it will be greater if $d f$ be fuppofed lefs than two Miles; therefore the Truth of the Obfervation may be juftly doubted of, feeing there is no fuch Obfervation any where; yea the contrary hath been obferved in the fame Place, fee long abfence of the Sun, fhould be higher than when the Sun left them after it had been prefent a long time; rather the contrary fhould happen, the Air being made groffer and lower by Condenfation, as fome may urge that count the Height of the Air inconftant. Yet, when I confider thefe things more accurately, three Particulars occur to me that might confirm that Appearance and the great Refraction: for the Obfervation cannot be denied, confidering that the Obferver underftood Aftronomy, and faw the Sun above the Horizon for fome Days after, when it was ftill under the Horizon; nor muft we doubt of the Number of the Days in the long Night they had, for when they came back they counted the fame Day of the Month, as their own People did, which could not be if they had miftaken before. For if we admit fuch an Altitude of the Air as is inconfiftent with the Refractions in the Temperate and Torrid Zone, we muft fay the Air is of the fame Height every where as truly in the Torrid and Temperate, as in the Frigid Zone. But, in the Torrad and Temperate, the upper Region of the Air is fo fubtile, that it doth not caufe Refraction, but only the middle Region of it; and therefore no wonder if the Refractions in the Torrid and Temperate Zones are lefs; for the Air that caufes them is lower, which Mould caufe the Refraction to be greater; yet it muft be much more rarified than the other Air. But to this it may be objected, that the Obfervations of the Sailors were made in a clear Air, as themfelves fay; to which I anfwer, that yet 'tis not probable that the Air was then fo fubtile as the cleareft Air in the Torrid and Temperate Zone. Secondly, it may be faid that the Air of the Frigid Zone, when the Sun returns to it after a long abfence, is firft refined in

Сн ap. 19. of Univerfal Geography. the upper Region, and that the middle is fomewhat more grofs, and therefore the Sun is feen by two Refractions, as the Stars are thro' Air and Glafs, and a double Refraction depreffeth the Star under the Horizon more than a fingle one, and fo the Altitude of the Air of one Mile, or three Quarters, will be enough. Nor can it be objected, why doth not the fame thing happen when the Sun departs from that Air, and the long Night begins; for then 'tis probable the Difference of the thicknefs of the Air is lefs, becaufe of the Sun's long Continuance; or we may fay the Exhalations are more grofs, in the Mornings of that Zone, after that long abfence. Thirdly, if a double Refraction doth not fatisfy, and it will not be granted that the upper Region caufes no Refraction, as was faid, then it mult be granted that the Air in that Place of the Frigid Zone was then much higher than in our Temperate Zone, and alfo much groffer (for 'tis only the Altitude that leffens the Refraction): but if there be a great thicknefs, the Refraction is much more encreafed thereby, than 'tis diminifhed by leffening the Altitude. But the firlt of thefe three Caufes is beft, that fuppofes the Altitude of the Air to be two Miles (for it cannot be lefs in Nova Zembla where the horizontal Refraction is faid to be 4 degr. 30 min .) : the other two lie under feveral Difficulties. We have faid it was the thicknefs of the Air that was the Caufe why, the Altitude being the fame, the Sun was not feen for fo many Days after it ceafed to rife on the third of November; and to we mult anfwer, that the Caufe may be the fame why the fame Dutchmen did not, on the thirtieth of May 1596, fee the Sun in the middle of the Night, in the Latitude 69 degr. 42 min . when it was not one Degree under the Horizon. But we have faid too much of this, occafioned by the difficulty of the thing ; there accurate Obfervations. Yet we mult not think, that if Obfervations of a Star, in different Elevations, do not give the fame Altitude, that therefore it hath different Altitudes, on account of the Difference of the Denfity of the Air, which is greater the nearer the Horizon ; and therefore Obfervation will give a different Altitude, tho' it be the fame, for, in the Calculation, the Denfity, and confequently the Refraction, is accounted the fame.
PROPOSITION XXXI.

Having the Depreffion of a Star under the Horizon when it firft.begins to appear (that is, having the borizontal Refraction of a Star), to find the leaft polfible Altitude of that Air, in wobich the Refraction is made ; and the Groffne/s of that Air and the greateft Quantity poffible by whicb it exceeds the Denfity of the Xtber; that is, the greateft Refraction polfible. Or more generally thus: Having the Refraction of a Star, at it's apparent Altitude, to find the leaft polfible Heigbt.

LE T the horizontal Refraction be $n f \mathrm{~L}$, (Fig. 28.) or the Depreffion of the Star under the Horizon $g f s$ or $g \mathrm{~L} s$, when it firft begins to appear, as it was in Nova Zembla 4 degr. 30 min. 'Tis known from the Doctrine of Optics, if a Ray, as $s f$, touch the Air in f; that is, if the Angle $\mathrm{S} f$ क or $n f \mathrm{~T}$ be a right Angle, then the Ray is not refracted ; but if the Star be under the Tangent, then no Ray can come to f directly. Therefore it is requifite the Star be above that Tangent, and that $s f$ or $n f T$ be lefs than 90 degr. Let it then be 89 degr. 59 min. or 90 itfelf, provided it be no greater than from nf T. Let there be taken the Angle of horizontal Refraction 4 degr. 30 min . and there remains the Angle

Сн ap. 19. of Univerfal Geography. TfL 85 deg . 29 min . the greateft that can be; then if it be made as the Sine $T f L$ is to the Radius, fo_{o} is T to $\mathrm{T} f$, which is the leaft Altitude of the Air poffible. For becaufe the Sine $\mathrm{T} f \mathrm{~L}$ is the greateft that can be, the fourth Proportional $\mathrm{T} f$ is the leaft that can be, if the middle Terms, viz. the whole Sine $\mathrm{T} L f$ and T L , be ftill the fame: if the Refraction of the Ray, that appears at the Horizon, be not given, but the Refraction in the Altitude $x \mathrm{~L} g$, we may work the fame way in the Triangle $\mathrm{L} r \mathrm{~T}$.

LIKEWISE the Proportion of the Sine of the Angle $n f$ T 89 deg . 59 min . to the Sine T $f \mathrm{~L}$ 85 degr. 29 min . will be the greateft poffible Proportion between the Denfity of the Air and that of the Æther.

PROPOSITION XXXII.

Having the Altitude of the Air, and one Refraction in it of a Star in a certain Alititude, to find the Law of Refraction, or the Profortion of the Sine of the Angle of Incidence, to the Sine of the refrazted Angle; or to find the tbickness of the Air by tbat Refraction.

T HE Altitude of the Air muft be greater than that we found to be the leaft poffible, otherwife the Refraction is not right taken, and the Problem is impoffible. (Fig. 28.) Let it therefore be greater, fuppofe $\mathrm{T} r$; and alfo let the Refraction in the apparent Altitude $x \mathrm{~L} g$ be $m r \mathrm{~L}$. Then there may be found the refracted Angle Tr L (having Tr, T L , and the Angle TL r) to which $\mathrm{T} r \mathrm{~L}$ if you add $m r \mathrm{~L}$, you will have the Angle of Incidence $m r \mathrm{~T}$, and the Proportion of the Sine $m r \mathrm{~T}$ to the Sine LrT; which will be the Rule of refracting VOL. I.

Hh
in

PROPOSITION XXXIII.

Having the Altitude of the Air, and tbe Refraction of a Star in one Altitude; to find tbe Refrattion in another Aititude.

FOR Example, let the Altitude of the Air be $\mathrm{T} f$ or $\mathrm{T} r$, and the Refraction $n f \mathrm{~L}$ at the apparent Altitude 0 , and the horizontal Ray is the refracted Angle. Then let there be given the apparent Altitude $r \mathrm{~L} g$ or $x \mathrm{~L} g$, and let the Refraction be found by the preceding Propofition, or the Proportion of the Sine $n f$ T to T $f \mathrm{~L}$. Then in the Triangle $\mathrm{T} r \mathrm{~L}$, having $\mathrm{T} r$ and TL , and the Angle $r \mathrm{LT}$, find the Angle $\mathrm{T} r \mathrm{~L}$; and as the Sine $T f L$ is to the Sine $T f n$. So let $\operatorname{Tr} L$ be to another Sine, which will be the Sine of the Angle $m r \mathrm{~T}$, from which take $\mathrm{T} r \mathrm{~L}$, and there remains the Refraction $m r \mathrm{~L}$ which was fought.

THE Antients ufed a more intricate and alfo a falle Method for finding it.

PROPOSITION XXXIV.

Having the Alitude of the Air, and the Law of Refraition; to find the Refrailion at the apparent Altitude of the Star, and from thence the true Altitude.

THIS is the fame with the former, where the Law of Refraction was to be found from a given Refraction in a given Height. Examples for working may be taken, from the Table laid down before.

Chap. 19. of Univerfal Geography.
Of the Reflection of Light in the Air.
PROPOSITION XXXV.

The Rays of the Sun and Moon are not only refrailed after they bave entered the Atmofphere, but allo reflected from the Particles of Air, or beat back as it zeere from a rough Mirror, becaufe of the irregular Situation of the Particles.

FOR if otherwife, no part of the Atmof phere would be lucid, except that the Sun is above; and the Sun being in the Eaft, the Air in the South and Weft would be dark; therefore as fome Rays pafs thro' the Atmofphere, fo fome are reflected feveral Ways, from one Particle to another, and thus they make the Air lucid.

PROPOSITION XXXVI.

Reflection of the Rays of the Sun from the Particles of Air, is the cbief Caufe of the Twilight, that is in the Morning and Evening.

THIS is evident from the preceding Propofition; for as the Sun being in the Eaft, it's Rays, darted to the Weft, are reflected to our Eyes, and fo render the Weft Part vifible; fo the Sun being under the Horizon, it's Rays fhot into our Air, are reflected to our Eyes from the Eaft in the Morning, and from the Weft in the Evening.

PROPOSITION XXXVII.

The firf of the Morning Twiligbt, that is, the enlightned Air in the Eaft, and alfo the end of the Evening Twilight, begins when the Sun is about 18 degr. under the Horizon.

T H I S Propofition is built on Obfervation ; for if in the Morning, fuppofe about one or two o'Clock, we obfe ve narrowly towards the Eaft, when a little white Colour begins to appear in the Air to the Eaft Part of the Horizon, and note the Hour and Minute, we may thence know the Depreffion of the Sun.

WE here fuppofe that the Air is clear, of which there being a great Difference, fome have therefore thought the I wilight begun and ended at the twentieth Degree under the Horizon, others only at the fixteenth Degree; for the groffer the Air is, the Twilight is the lefs fenfible; the contrary of which we faid happened in the Refraction, which is then moft fenfible.

PROPOSITION XXXVIII.

The Altitude of the Air, or the Matter that caufes the Twilight, cannot be known from the Quantity of Twiligbt, as fome bave thougbt; nor does the beginning of the Twilight proceed from a fingle, but a double Reflection.

Let T Lb (Fig. 29.) be the Earth, gfom the Bounds of the Air, and L the Place of the Earth in which the Twilight appears, or the Light in the horizontal Air f, and therefore $f \mathrm{~L}$, is the Ray reflected from the $\operatorname{Air} f$, and the incident folar Ray $f g S$. Mathematicians, who have written of the T wilight, will
have have the incident Ray in f, which makes the reflected Ray f L, to come from the Sun s; and becaufe no Ray can come to f from the Sun, while the Sun is under the Tangent $f b s$; therefore when the Sun comes to the Tangent fbs, for Example to s, then doth the Ray begin to come to f; and becaufe they will have the Reflection to be from f, as from a concave Mirror, therefore T $\mathrm{T} b$ muft be equal to $T f \mathrm{~L}$; and becaufe the Sun is found to be $18 \operatorname{deg} r$. under the Horizon, $n f$ s muft be 18 degr. and $\mathrm{L} f b 162$ degr. and $\mathrm{T} f b$ or T $f \mathrm{~L}$ 81 degr. and LT 9 degr. from whence $\mathrm{T} f$ is found 174 German Miles (as Clavius and Nonius make it) and the Air about eleven Miles: nay Albazen and Vitellio make it thirteen Miles.

SO great an Altitude of the Air is not to be allowed as difagreeing with other Phænomena, and being founded on a falfe Fiypothefis, that the Ray $g b s$, which makes the reflected Kay $f L$, comes from the Sun itfelf, which is falfe; for it comes, by Reflection, from another Ray, for Example from the Ray $g l$. And that it is not neceffary to make a fmall Light in s, that the Ray fg fhould come from the Sun itfelf, but that another Ray may ferve, is proved from hence, that we fee, in the weftern Air, fome Light before the Sun rifes, tho' 'tis certain no direct Ray can come from the Sun to the weftern Air, but from another Particle of Air, for Example from f and o; and fo the reflected Ray L m comes from the incident Ray $f m$ which is reflected from the incident Ray $g f$, and again $g f$ from another $g \mathrm{~L}$; which perhaps comes again from another. Secondly, 'tis worth remarking, that they have made the Reflection from the Air as from a concave Mirror; the Center of which Cavity is T the Center of the Earth, which is falfe; for the Rays reflect from the Air without any regard to the Center of the Earth, but to their SuHh 3 perficies, comes from the weftern Air to L ; for if it came from m as from a Concavity, it's incident Ray Thould have come from the Place x, whereas it comes from 0 , or between f and 0 . Therefore the Ray L m fo reflected, is from the Particle m as the Fig re required. And in the Air there are Particles of very different Figures; and fo no wonder if they make Reflections thro' the Air every way.

PROPOSITION XXXIX.

Suppofing the Trwilight is not made by one but a double Reflection, to find from thence the Altitude of the Air, whith may agree better with otber Obfervations.

I T was faid in the laft Propofition, that the Ray $g b f$, (Fig. 29.) which makes the firt reflected Ray in the Beginning of the Twilight, does not come from the Sun itfelf, but that 'tis reflected in g; let therefore the incident Ray be $g l$ (which may touch the Earth $m p$, and fo \lg is the firft Ray which can come to g) and let us now fuppofe it to come from the Sun itfelf immediately, and by Refraction to be turned a little afide; that is, let QL be the Ray from the Sun, and let $l p g$ be the refracted Ray, and $q b s$ the reflected Ray, and $f \mathrm{~L}$ the fecond reflected Ray. The Altitude of the Air T f is to be found; and, becaufe the incident Ray Ql refracts into $g l x$, let us fuppofe the Angle of Refraction $g l x$ to be 30 min . and that the Center of the Sun is 17 degr. under the Horizon, when the Twilight begins; therefore the Limb of the Sun will be $16 \operatorname{deg} r, 45 \mathrm{~min}$, under it, and fubftracting thie 30 min . for the Refraction, and Angle $n \mathrm{~K} x$ will be 16 degr. 15 min . which is the Depreffion of the Sun's Limb after Refraction, And becaufe $\mathrm{K}, \mathrm{K} p$ are equal, and alfo $f \mathrm{~L}, g p$, then $\mathrm{K} g$, $\mathrm{K} f$ will be equal, and the Angle $\mathrm{K} f g$ equal to $\mathrm{K} g f$, and both tegether equal to $\mathrm{g} \mathrm{K} n 16$ degr. 15 min . therefore $\mathrm{K} f g$ is 8 degr. 7 min . and $f \mathrm{~T} \mathrm{~L}_{4}$ degr. and $\mathrm{T} f \mathrm{~L} 8 \mathrm{o}$ degr. whence $\mathrm{T} f$ is found to be 86r Miles and a half, and thus the Air's Altitude I Mile and a half, which is far lefs than was formerly made by the Twilight, and will be found much lefs if a threefold Reflection be made the beginning of the Twilight ; which is not impoifible. And this double or triple Reflection is better allowed for the Caufe of the Twilight's Continuance, than that which Kepler brings from the fplendid Matter about the Sun. You may fee more of the Time of Twilight and it's various lengths, in the fecond Patt of this Book.

PROPOSITION XL.

To find the Altitude of the Clouds by the Quadrant (a).
THE Air being calm and clear, fix on fome Point in the Cloud that is remarkable, and mea-
(a) Mr Boyle tells us, that a good Aftronomer, who had divers times meafured the Height of the Clouds, affured him, that he could never find any that were above three quarters of a Mile high, and that few exceeded half a Mile. And Mr Crabtrie (an excellent Mathematician of the lalt age) upon meafuring their Height, was furprized to find them no higher, and wrote to his friend (that great Genius of the lalt age) Mr Horrox, about it. Who in his Letter, Nov. 23. 1637, tells him, ' I am not furprized that

- you fourd the Clouds fo low,
- becaufe I have often found it
' fo. I remember that I con-
- trived a way, about two or
- three years ago, of taking the
- Height of the Clouds with
- a Quadrant, all at one Station;
' and I never could find any,
' that were at mot above a
' Mile and half high.' Afterwards, faith be, ' I found the - fame method in Kepler (Afir.
- Cop. p. 70.) where he faith,
- The Clouds are never above
- a quarter of a German Mile - high, that is one of our - Eng lija Miles.

Hh 4
fure at $t w o$ Stations : by two Obfervers at the fame time; and thus you may find it's Height, which is never found to be above a Quarter of a Mile.
PROPOSITION XLI.

To meafure the Quantity of the Air, baving il's Altitude given.

THIS is only to meafure the Space between the Earth and the utmoft Bounds of the Air, which is eafily done, having the Altitude of the Air, by meafuring the Solidity of the Sphere made of the Earth and Air, and then of the Earth only; and fubftracting the one from the other, there remains the Quantity of Air.
PROPOSITION XLII.

The Air of certain Places batb fome peculiar Properties.
THUS in Egypt it feldom, or rather never, rains; and if fmall Rain fall at any Time, there follow Difeafes, as Catarrhs, Fevers, Afthmas, $\mathcal{E} c$. The Inundation of the Nile, and the daily Hoarfrofts in the Morning, fupply the want of Rain. And fo in the Kingdom of Peru, there are never feen Rains: and in feveral Places under the Equator it rains for a whole half Year, and is fair the other. See Part ii. Cbap. xxvi.

THE Inand Pulon Timor is for the moft part covered with Mifts and Hoar-froft.

IN the Ifland Sumatra, the Air is unwholefome, on account of the feveral ftanding Pools in it; and the like holds of feveral other Places, as in old Mexico, Malacca, Ėc.

THE

THE Illand of St Tbomas, lying under the Equator, is thought of all Countries to have the groffett unwholfomeft Air, tho' it be moft fruitful in every kind.

IN the Province of Cbili the Air is fo very fine and fubtile that the Blade of a Sword, fheathed without wiping, will not ruft.

I N the Azores the Air and Winds are fo fharp as in a fhort time to corrode Plates of Iron and the Tiles on the Houfes, reducing them to powder.

ARISTOTLE fays, that on Mount Olympus there is not the leaft Motion of the Air, nor even any Air at all, for the Characters, written on the Duft there, remain as at firf, after many Years; and they that go up it, cannot live there, except they carry with them wet Sponges, by the help of which they breathe.

I N America, when the Spaniards were paffing from Nicaragua to the Province of Peru, many of them, as they paffed over the Tops of the Mountains, did, with their Horfes, there breathe their laft, or were turned into Statues with the Cold; and thus continued 'till they that efcaped returned. Some think this was owing to want of Air, but that is not likely; nor what Arifotle fays of Olympus; for the contrary is found on higher Mountains, whofe Tops are covered with Snow. Therefore 'tis certain thefe Mountains could not be above the Air, but the Air fnowed upon them. See tbe Cbap. of Mountains. Bubequius, an Eye-witnefs, fays, that Olympus in Summer is covered with Snow.

THE Air about the Inands in the Indian Ocean is fo fragrant with the fmell of Spices, that Seamen perceive it (efpecially when the Spices are ripe) three or four Miles off, when the Wind is againft them.

THE Sea Air is more unwholfome than that on Land, and lefs agreeable to thofe that are not ufed
to it. The Difference is very fenfible when Seamen come near the Shore; for they know when they are within a Mile of the Land, by drawing in the Land Air in breathing. This the Seamen of Soffala, on the eaftern Shore of Africa, know efpecially.

W HILST this was printing, I met with an Obfervation made by David Fralicbius on Mount Carphatbus in Hungary, which, becaufe 'tis very ufeful in forming a Judgment of the Altitude of the Air, and of it's feveral Regions, I thought proper to add it here, tho' it fhould have come in at Prop. xviii. He fays ' Carpatbus is the chief of the ' Mountains in Hungary, which Name is common ' to all that Tract of the Sarmatian Mountains, - which feparates the Hungarians from the Rulfans, - Polanders, Moravians, Silefians, and thofe in that ' Part of Auftia beyond the Danube. Their high ' and frightful Tops that are above the Clouds 6 appear at Cefareopolis. They are called fometimes 6y a Name importing that they are almoft conti' nually covered with Snows; and by another Name that imports them to be bald and fhaven ' as it were. And indeed the Rocks there do far ' exceed the Alps in Italy, Swilzerland, and Tyrol, 6 in roughnefs and Precipices: they are almof unpaffable, and no Body goes near them but thofe that are curious Admirers of Nature.

- A ND to mention this by the way; when I was a Youth, having, in June 1615, a Defire to ' try how high thefe Mountains might be, I went up with two of my School-Fellows: when I had got up to the Top of the firf Rock with great - Difficulty, and thought I was on the Top of all, there appeared another ragged Rock much high' er ; and when I had clamber'd to it, over many - large and loofe Stones, (any one whereof being - thrown down would carry fome hundreds far 6 greater
' not to the Earth but into the Heavens. For the
6 vifible Objects, on account of the great Declivi-
' ty, appeared diminifhed and confufed. But when
- I afcended to a higher Mountain, I came into
' thick Clouds, and having got thro' them, I did
' after fome Hours fit down, when I was not far
- from the Top, and plainly obferved the white
- Clouds, I was among, moving below; and over
- them I had a clear profpect fome Miles beyond the
- Bounds of the Country of Sepufiam, in which the
- Mountains were. I alfo faw other Clouds higher,

6 others lower, and fome equally diftant from the
' Earth; from all which I gathered three things,

- i. That I had paffed the beginning of the middle
- Region of the Air. 2. That the Diftance of the
- Clouds from the Earth is different in different

Places, acccording to the Vapours raifed. 3. That

- the Diftance of the loweft Clouds from the
- Earth, is far from being feventy two German

6 Miles, as fome would have it ; and is only half
' a German Mile. When I came to the Top of
6 the Mountain the Air was fo thin and calm
6 that I could not perceive the Motion of a Hair,
' tho' there was a vehement Wind when I was on
6 the Mountains below. From whence I find that
' the higheft Top of Mount Carpatbusrifesa German
' Mile from it's loweft Root up to the higheft Re-
' gion of the Air, to which the Winds never

- reach. I fired a Piftol on the Top, which at
- firft made no greater Noife than if I had broke
' a Stick or Staff; but, after a little time, there was
' a murmuring for a long while, which filled the
- Vallies and Woods below. And coming down
' thro' the ancient Snows to the Vallies, I fired
' again, which made a dreadful Sound, as if
' great Guns had been fired, and I was afraid the
' whole Mountain fhould come down on me. The
- Sound lafted for half a Quarter of an Hour,
' 'till it had reached the moft fecret Caverns,
' where the Sound being enlarged reffected back
' every Way; which Caverns not being above,
' there was at firf little rebounding, but when
' the Sound reached thofe below, it rebounded vio-
' lently. On thefe high Mountains it hails or
' fnows for the mof Part, even in the middle of
' Summer ; viz. as oft as it rains in the neighbour-
- ing Vallies below: which I have found. The
' Snows of different Years may be known from
- their Colour and firm Surface.

C HAP,

C H A P. XX.

$$
\begin{aligned}
& \text { Of the Winds in general, and of the Points of } \\
& \text { the Compafs. }
\end{aligned}
$$

THE Wind is a Motion of the Air ; and therefore the Confideration of it belongs to the Abfolute Part of Geograpby; efpecially feeing the Knowledge of it belongs to Hydrography, and moft of all to Navigation, which requires fome Knowledge of Geography : and tho' I willingly allow 'tis more Phyfical, yet becaufe it contains feveral things, that relate to Geography we fhall fpeak briefly to it.
PROPOSITION I.

The Wind is a Commotion of the Air wbich may be felt, or which batb fome Force.

THUS it may be defined by the Confent of all Nations: nor do I care to difpute with Critics about it. If the Motion be gentle, 'tis called a Gale or Breeze; and if it be not felt, 'tis not called a Wind; for fuch fmall Motions are conftantly in the Air, tho' there is no Wind, as appears from the Sun-Beams let into a dark Chamber, thro' a fmall Hole, where you fee the Atoms carried with the Air: and therefore we put in the Word felt in the Definition, becaufe the Motion of the Atoms is only feen.

PRO-

PROPOSITION II.

The Winds for the moft part tend from one Point to the oppofite, and drive Bodies tefore them.

THIS appears from the Force of Wind on our Bodies, and efpecially from the Vanes fet on the Top-mafts of Ships, which turn to the Point contrary to that the Wind comes from. Yet this is not always direct and conftant, but with fome Agitation to the adjacent Points. Some think there fhould be added in the Definition, a Commotion towards one Point, or to the fame Part; but we think it may be better left out, feeing there are fome circular Winds; and, fpeaking accurately, no Wind exactly obferves the fame Point.

PROPOSITION III.

A Point of the Compafs is an imaginary Plane, perpendicularly extended from any Point of the Eartb to one of those that are on the Circumference of a Circle, baving that Point for it's Center.

SUCH is the true and common Notion of a Point of the Horizon. Sometimes the Points on the Horizon, are the Things we call Points by way of Eminence.

THE explaining of the Points of the Compafs doth not belong to this Section of Geography, but to the third, of the Comparative Properties; but be caufe the feveral Winds are called by them, or they by the other; therefore we here anticipate treating of them. And this is their Ufe, that when feveral Things have different Situations we determine them thereby.

Chap. 20. of Univerfal Geography.

PROPOSITION IV.

The Points are infinite in number, for Planes may be drawn from all the Points on the Horizon; but only tbirty two of them, bave got Names, wbich are common to the Winds that blowe from them.

THE Points, and alfo the Winds, are two-fold as the Cardinal and Collateral; the Cardinal are North, South, Eaft, and Weft. The Collateral are thofe between two Cardinal ones, of which there are twenty eight, there being feven in every fourth Part of the Horizon; and of thefe, thofe that are exactly in the middle between the two are the chief ones, being 45 degr. diftant from the Cardinals, as N. E. S.E. S. W. N. W.

PROPOSITION V.

These tbirty two Points are equally diftant from each otber, viz. each from it's adjacent Point; wbence there are II degr. of the Horizon, and 15 min . betwixt every two adjacent Points: And the Cardinal Points are 90 degr. from each otber.

THERE being 360 degr. in all Circles, fo on the Horizon; and thirty two Points being on the Horizon, each Point muft be 11 degr. 15 min .

THIS Divifion, with the feveral Names of every Point, was made by the Germans, as moft commodious; their Names are not eafily expreffed in other Languages: tho' Their Order and Names are in the following Table. Weft.

N		South	Weft
N and by.E	E and b	S.and	
N N E	ESE	S S	
$\mathrm{NE}_{\mathrm{NE}} \mathrm{a}$ d by N	SE and	S Wa	N
	SE	SW	N
NEand by E	SE and by S	S Wand by W	NW an
nd by N	S and by E	and by S	

PROPOSITION VI.

Becaufe there is a confiderable Diftance between thefe tbirty two Points, fome put a Point between every two, and make jixty four; which are obferved in long Voyages.

BU T Mathematicians, finding that Divifion not accurate enough, made as many Points as Degrees on the Horizon. viz. three hundred and fixty, which are expreffed by their Diftance from the North and South; but there is not required fo nice a Divifion for the Wind.

Y E T the thirty two Winids might be better defigned than from the thirty two Points, from which they blow; and this would ferve in all Languages; that is, if they were called the firft, fecond, and third, as they are in order from the one Cardinal to the other.

PROPOSITION VII.

The Antients, both Greeks and Latins, counted fero Winds, or ratber they gave Names to ferw; nor are thefe ferv determinate, one Wind baving feveral Names, not taken from any order, which make it bard to underfand their feveral Points.

INDEED

Chap. 20. of Univerfal Geography.
INDEED the Greeks had antiently but the four Cardinal Winds; nor are any more mentioned by Homer : and to thefe they afterwards added four ; 1. That was made one where the Sun rifeth at the Winter Solltice, between the South and Eaft, called Eurus; for the Eaft Wind itfelf was called Subfolanus; but Gellius calls the former Vulturnus, and the Eaft Wind Eurus. 2. That Point in which it then fets, called Africus. 3. That where the Sun rifeth in the Summer Solftice, between the Eaft and North; and the Wind from thence was called Aquilo. 4. Where it then fets between North and Weft, called by the Grecians Corus.

PROPOSITION VIII.

Thbe Defignation of the Winds by the Greeks was very incommodious for Sailors, and others; which Inconvenience they did not mucb find, not going far from Greece in their Navigations.

F OR in Places of different Latitudes, thofe Divifions they made, were not the fame; yet the Greeks retained them, augmenting them with other four intermediate Winds, which they gave Names to, and fo made twelve in all : tho' others among them gave other Names to fome of them. The Latins added one between every two adjacent Winds; and fo made twenty four. And Seneca fpeaks of their being obferved of old by Varro to be incommodious, and therefore they were fo ordered as to be made equally diftant, without regard to the Place of the Sun's rifing and fetting at different Times of the Year. But what Seneca fays, that there are no more Winds than twelve, is erroncous and ridiculous: For they are infinite.

PROPOSITION IX.

We bave explained the feveral Winds that bave their Names from the Points tbey blow from, and Jewn that the Divijons of the Greeks and Latins are incommodious for Navigation and Geography.

THEREFORE we retain the Divifion of the Moderns into thirty two Winds, equally diftant. And thofe are called oppofite and contrary Winds that blow from the Points diametrically oppofite: for we confider the Winds as coming from another Place to us; but the Points we conceive as extending from us to another Place.

PROPOSITION X.

The Caufes of the Winds are various; for Seeing the Wind is notbing but a continual Impulfe of the Air, all thofe tbings that caufe the one, are Caujes of the otber.

1. THE principal and general Caufe is the Sun itfelf, which, by it's fiery Beams, rarifies and attenuates the Air; efpecially that which is juft under it; and the Air rarified takes up more Room: and hence it is, that the Air thrufts forward the Air next to it ; and the Sun going round from Eaft to Weft, the Preffure is made weftward, as appears in moft Places of the Torrid Zone, and every where there on the Sea a continual Eaft Wind blows: and the Air rarified preffes weftward within the Tropics. There is a Preffure indeed all round, but the Air is not admitted to other Points, the Preffure not being fo great as towards the Weft, becaufe the Sun moves that way, but in our Climate, 'tis fo only for the moft part, no other Winds that blow ftronger, and overcome it. And fome Places, or other Points, are more difpored to receive this Force than others; and therefore when the Air is thruft moft to the North, the Wind is faid to blow from the South; and fo of other Winds. And 'tis to be obferved, that when this is to any Point between the four Cardirals, then the Wind feems different in different Countries. For tho' the Point, in refpect of the Place the Sun is vertical to, be but one, yet it is different in refpect of other Places. And thus one and the fame Caufe makes a Wind that hath different Names in different Places: if that Caufe be affifted by others the Wind is flrong, if hindered* but weak. And oft-times another Wind blows that is helped by the general Caure.
2. THE fecond and moft frequent Caufe of the Wind, are the Exhalations from Sea and Land that are raifed plentifully, and with fome Force; but they do not caufe a Wind 'till they begin to rarify.
3. THE Rarefaction and Attenuation of the Clouds, great or fmall, made by the Sun and other Stars, or by the fulphureous Particles and Fire inclofed in a Place.
4. THE melting of Snow and Ice, efpecially that which lies on high Places: for they are not intirely melted.
5. THE Rifing, and various Situation, of the Moon and Stars.
6. THE Condenfation or Rarefaction of the Air and Vapours by Heat or Cold.
7. THE defcending of Clouds that thereby prefs the Air below.

THE Confideration of the Esolipile is of ufe, for underttanding thefe Caufes of the Wind; for the Water inclofed in it, being heated with Fire, Ii 2 fends fends, out of a fmall Hole of it, a ftrong Steam of Vapours, like a Wind blowing, which continues 'till the Water is all exhaled. The groffer Air that furrounds ferves inftead of that fmall Hole; and fometimes 'tis ftrengthned by other Vapours and little Clouds behind it, and fometimes 'tis condenfed, and fo makes way for the Air to move to that Point.
PROPOSITION XI.

Why the Wind may blow in a Line perpendicular to the Horizan.

THE Reafon is, that the Air furrounds the Earth in a fpherical Figure, and the Air is thruft about for the moft part in a great Circle of the Earth ; and tho' the Air may be alfo thruft in a tranfverfe Line, yet becaufe the Air doth not prefs fo much, or refifts more at the Sides, therefore the Wind blows in the middle.

W E fhall underftand this better if we confider the firt Caufe of the Winds. For the Sun thrufts the Air to all the Points of the Place that it is vertical to; but 'tis not received in all thefe Points, as was faid. If we then confider great Circles to be drawn from that Place, and between thefe, thofe to which the Air is forced, or in which 'tis received, all the Places of the Earth fituated in that Circle, or Semicircle, will feel the Wind coming down perpendicularly; becaufe all great Circles that pafs thro' any Place are perpendicular to the Horizon of that Place; for the fame Reafon, if the Wind break out from a Cloud broke, or diffolved, thofe Places that are fituated, beyond thofe Circles will not feel the Wind, tho' the Air move above their Horizon ; becaufe 'tis not perpendicular, but oblique to that Horizon.

YET

YET' 'tis not generally true, that the Wind goes down perpendicular to the Horizon; for often it blows in the Air tranfverfly.

THUS we may fee the Smoke that comes out of a Chimney is not carried by the Wind all one way, but a part of it goes another way.
PROPOSITION XII.

Why the Winds blow with fome Interruption, refing as it were for a Time, and on a Judden return with Force; and why on the Sea they are more conftant.

THE Reafon I fuppofe is, that the Caufe of the Wind is not conftant, and takes fome time to gather it's Strength ; and the Exhalations being more conftant on the Sea, and the Motion of the Wind lefs hindered; therefore that Change is not fo fenfible there, tho' there is fome Change as to the Degrees of blowing.

PROPOSITION XIII.

Why no Wind blowes perpendicularly from the Air or Places of tbe Earth.

ARISTOTLE, in his fecond Book of Meteors cbap. ix. treats very obfcurely of this Queftion; fo that his Followers do not agree about his Opinion : nor fhall I be at Pains to write their O pinions. The Caufe which feems to be more intelligible is, that the Air being thruft down to the Center of the Earth cannot go that way, but is hindered by other Vapours that are forced up; and the great Refiftance of the Air below caufes the Force downwards, to tend fideways: which is the more probable becaufe that which
the Wind confifts of is lighter for the moot part. than that Air; and alfo more rarified than the Air near the Earth.

PROPOSITION XIV.

Why the Eaft Winds are more frequent than the Weft.
THE Caufe of this is manifeft from Prop. ıo, where we made the Sun the chief Caufe which rarifies the Air from Eaft to Weft; and therefore the Air is more preffed towards the Weft: and this cannot be hindered except there are a great Quantity of Exhalations or Clouds in the weltern Parts, which is not very frequent.
PROPOSITION XV.

Wby the North and Eaft Winds are more ftrong and fevere, and the South and Weft Winds more weak and gentle.

THE Reafon is becaufe the North Air is groffer on account of the Cold, and the South Air in our Zone is more rarified by the Sun; and the more rarified the Air is, it's Motion is the lefs forcible ; yet the South Winds are cold, dry, and ftrong, in the Temperate Zione, contrary to ours, no lefs than the North Winds are to us. But the Eaft Winds are fevere or more intenfe on another Account, viz. that they arife for the moft part from the Rarefaction of the Air by the Sun, which is continually carried from Eaft to Weft, and fo is forced more towards the Weft. But tis likely there are other Caufes which hinder or promote this Motion. The Portuguefe Sailors call the North and Eaft Wind Bryjas; but the South and Weft they call Vendarvales.

PROPOSITION XVI.

Why the Soutb and Weft Winds are found to be botter tban the Eaft or North, whicb bave a much greater frigorific Power.

THUS is the Queftion ufually propofed; but we muft know 'tis not to be underftood generally of all Places, but only thofe in our Zone; for in the other Temperate Zone, towards the South from the Equator, the contrary holds good; for in thofe Places the North Winds are hot, and the South more cold, and fo the Nature of the Thing requires. For the South Wind being more hot, and the North more cold, proceeds hence that the South Winds come from Places near the Torrid Zone, and the North Winds from the Frigid Zone; but the contrary happens in Places near the AntarEZic Pole; for the North Winds come to them from the Torrid Zone, and the South Winds from the Frigid. But another Account is to be given of the Eaft and Weft Winds; for the different Places of the two Temperate Zones are not to be regarded here. Firft we faid in the preceding Propofition, that the Weft Winds are lefs frequent in all Places; the Caufe of which is the fame with that for which the Weft are found to be hotter; viz. becaufe they blow for the moft part in the Night-time after Sun fet, where the Air, preffed to our Place, is hotter or lefs cold than the Air of our Place; as being further from the fetting Sun than the Place between us and the Sun then. There is another Caufe which alfo holds good in the Difference between the North and South Wind; viz. that the Weft Winds do not blow fo ftrongly, but with fome flownefs; for 'tis known that a Gale or Breeze is the colder the more fiercely it blows; Breath (which we can make either cold or hot) fhews.

PROPOSITION XVII.

Wby Seamen when they fee a fmall black Cloud expeet Wind from the Part in which it is, efpecially if it be of a pale and blackifs Colour; and to explain otber Signs of the approacbing Winds.

A twofold Reafon may be given; for either the Clouds of that Colour fhow that they are foon to be refolved and diffipated into a Wind ; or the Clouds falling down by their Weight, prefs the Air below, which caufes a Wind : of that peculiar little Cloud which the Dutcb call the Ox-eye, fee the Cbapter following.

WHEN the Sun appears fpotted, at it's rifing, and hiding itfelf as it were under a pale or black Cloud, it foretels Showers or Winds to come. 2. If the rifing Sun feem hollow, cafting it's Beams as it were from it's middle, it fhews a wet or windy Seafon approaching. 3. If the Sun be of a pale Colour at fetting, it denotes Rain; but if it be of a red Colour, it fhews the next Day will be clear and calm. 4. If the Sun fet pale behind black Clouds it fhews there will be a North Wind foon. 5. If the Moon be red, like Gold, ?tis a fure Sign of a Wind to come, according to the common Verfe

> Pallida Luna pluit, rubicunda flat, alba Serenat.
6. A Halo about the Moon; 7. If the Moon's Horns be blackifh, and, 8. If the North Horn of the Moon appear to be more ftretched out, 'tis a Sign of a North Wind; but if the South Horn appear fo, 'tis a Sign of a South Wind approaching. 9. The rifing of the Moon, and remarkable Stars, as ArEturus, Orion, and efpecially the rifing of thofe in Capricorn, with the Sun. 10. If the two fmall Stars in Cancer, called Afelli, be covered with a Cloud; if the North one, then a South Wind; but if the South one, then a North Wind. 11. The Winds do, for the moft part, begin to fettle in a Point, when the Rains are over. 12. A certain Noife and Murmuring; as if there were a Boiling heard in the Sea. 13. The Antients alfo took their Signs from living Creatures; as the Crow, the Goat, the Dolphin, Ėc. I4. From fiery Meteors, Lightening, and opening of the Ground, and falling Stars; but not that Light feen in the Dark, or Fack with bis Lantborn.

PROPOSITION XVIII.

Wby the Winds in Spring and Autumn blow more ftrongly and frequently, than in the Heat of Summer or Cold of Winter.

I fuppofe 'tis fo in Spring, partly becaufe of the melting of the Snow, efpecially in high Places; partly becaufe the Pores of the Earth are then open, and fend forth more Exhalations ; and partly becaufe the Air and Vapour then becomes more rare ; being condenfed in the Winter. Moreover, there falls much Rain a Month before the Spring, and in the Spring itfelf, becaufe the moift Conftellations are in thofe Places of the Zodiac, into which when the Sun enters the Spring begins. But the Caufe of the frequent Rains, and blowing of the Winds in Harveft, is, that the Sun then draws up fome Vapours; but the Heat being fmall, it only draws thofe that are groffer and not fine enough. But in the Summer there are too much attenuate the Exhalations, and fuffers them not to go fo much together as is neceffary to produce Wind. Which Caufe is not indeed general, nor always true; nor is it generally true, that there are no Winds in the hot Summer, but only that it offen happens fo. In a fevere Winter there are few Winds; becaufe few Vapours are then exhaled, and thofe that are raifed are either condenfed to Snow, or elfe are not fo rarified or diffipated thro' the Cold, as to caufe a Wind.

PROPOSITION XIX.

In wwhat Allitude, or in wwat Region, of the Air, do the Winds begin to blow?

SOME think they are not above the lower Region of the Air; becaufe the Tops of high Mountains, as Olympus, are found to have no Wind on them. I doubt the Truth thereof, for the Smoke from the Top of Mount 压ina is feen to be toffed here and there; and therefore I think there may be fuch a Commotion of the Air in the higheft Region alfo.

PROPOSITION XX.

How far may one and the fame Wind blow?
THERE is a great Difference in this Matter; for the Winds blowing from Eaft to Weft, under the Torrid Zone, feem to go round the Earch; and thofe alfo that blow thither from the South or North ufe to accompany the Seamen a great way for many Days. The fame feems alfo true of collateral Winds; but here lies the Difference, that the fame under Prop. 10. at the end of the Explication of the firft Caufe.

C H A P. XXI.

Of the Kinds of Winds, and of Tempefts.

IN the preceding Chapter we gave the Divifion of the Winds, their Differences, or rather different Names, which they have from the feveral Points they feem to blow from. This Divifion was therefore accidental, and refpecting a certain Place on the Earth, which thefe Points referred to. We fhall in this Chapter give other Divifions and Properties of the Winds belonging to certain Places of the Earth, or certain Times of the Year; tho' we wifh we had more and exacter Obfervations of them. But we fhall produce fome that we have gathered with much Pains from the Journals of Sailors.
PROPOSITION I.

Some Winds are conftant, otbers inconfant.
THE conftant are fuch as blow at leaft one Hour, or two, from the fame Point.

THE incontant are fuch as blow one while from one Point, and another while from another, in a fmall Time.

THE Caufe of their fhort continuance in one Point, and of their changing on a fudden, feems

T H U S theWinds that proceed from the Motion of the Air with the Sun are conftant; and thofe likewife that proceed from the melting of the Snow efpecially in high Places. 2. There being no fuch Vapours in that Quarter the Wind blows from as are fit to make Wind. 3. If the Air about the Cloud, from which the Wind comes, be thicker, and hinder it's Paffage; but if the Air is not thick or clofe together, and but a few Vapours, here and there, in the feveral Quarters; or laftly, if the general Caufes do not operate there, then the Wind is found to be changeable, and for the molt part gentle.

> PROPOSITIO N II.

T'bere is a General and Particular Wind.
THAT is called by Sailors a General Wind which blows in feveral Places at one Time, thro a large Tract of the Earth, almoft all the Year round.

A ND this Wind is hindered, I. In Places of the Sea near Land; for here they drive againft the Vapours that come from other Points; and therefore 'tis in the middle of the Sea that this General Wind is obferved. 2. There may alfo blow another Wind in the middle of the Sea, when there is a Cloud, or fome other Caufe in another Point, ftrong enough to produce Wind. From thefe two Caufes it is that the Geral Winds are not fo conftant as they might be otherwife.

THESE General Winds are found only between the Tropics, round the Earth, except in fome Places where they are feven Degrees beyond the Tropics is Tropics; and they are ever from the Eaft, or from collateral Points, as South-Eaft and NorthEaft, and that the whole Year round ; yet not always with the fame Degree of Force in all thofe Places, but they are hindered in fome Places more, in others lefs. They are moft conftant in the Pacific Sea; viz. that Part of it which lies between the Tropics; fo that the Ships which come from the Aquapulco, a Port in New Spain in America, to the Pbillippine Inands, that is, from Eaft to Weft, often fail three Months without ever changing or fhifting their Sails; having a conftant Eaft or NorthEaft Wind: nor did ever any Ship yet perifh in that vaft Voyage of one thoufand fix hundred and fifty Miles. And therefore the Sailors think they may fleep there fecurely: nor is there any need of taking care of the Ship, when that General Wind carries them ftrait to their defired Port, the Pbilippine Ifles; near to which indeed there are fome other Winds that come againft the General Wind. And thus 'tis alfo in failing from the Cape of Good-Hope to Brafil in America; in the middle of which Voyage lies the Ifle of St Helena, to which they commonly go as they return from India to Europe, and lies about three hundred and fifty Miles from the faid Cape : which is run oft-times in fixteen Days, and fometimes in twelve, as the General Winds are more or lefs ftrong; and the Seamen are as fecure when they come to the fame Parallel of Latitude with St Helena (for the Cape is beyond the South Tropic) ; their chiefeft care is to obferve that they do not pafs by the Inand, as 'tis very fmall, for if they pafs it but the eighth part of a Mile, they cannot return to it for the eafterly Wind. Thus they are forced to go to Brafil for frehh Water, or the other Inland called Afcenfion with great lofs of Time.

IF it be afked how they fail when they come the contrary way, i. e. from the Pbilippines to New Spain, or from Brafil to the Cape of Good-Hope going to In^{\prime} dia; in thefe Voyages the Reader murt obferve a threefold Artifice; for either they fail the Sea beyond the Tropics, (and thus do not go to St Helena while they go from Europe to India), or when they fail within the Tropics they do not go directly from Weft to Eaft but obliquely, from the North, or a Point collateral to it, to the South, and fome Point collateral to it ; or laftly, they chufe thofe Times for failing in which they know the General Wind is often diverted: but this laft feldom happens, and therefore the other two are more frequent ; of which we fhall fay more in the Chapter of Navigation.

THERE are then two Seas under the Torrid Zone in which the General Wind, from the Eaft and collateral Points, prevails thro' the whole Year ; viz. that between South Africa and Brafil, and that between America and the Oriental Ines, of which the Pbilippines are a Part. And the third Part of this Sea in the Torrid Zone, viz. between South Africa and the Oriental Ines, is not without the General Wind; tho' 'tis often interrupted becaufe of the many Inands there; and more in fome Places than others. Tlis Wind blows moft between Mozambique, in Africa, and India, in the Months of Э̛anuary, February, Marcb, April ; and in the reft of the Months other Winds blow, of which in the following Propofition: This general Wind is more hindered in the Seas among the Indian Ifles. The Eaft Winds begin to blow hard in the Month of May at the Ine of Banda, with fome Rain ; and at Malacca in September ; and in other Places otherwife, as will be fhewn in the following Propofition.

YE T this General Wind does not happen alike near the Tropic in all Places, but extends itfelf diffe- rently; for the Tropics are diftant from the Equator on both Sides twenty three Degrees and thirty Minutes; and the General Wind extends itfelf in one Meridian to the Latitude of twenty Degrees; in another to fifteen, in another to twelve.

THUS in the Indian Ocean, when the Eaft or South-Eaft Wind blows, in the Month of Fanuary and February, 'tis not fenfible 'till you come to the fifteenth Degree of Latitude.

S O in going from Goa to the Cape of Good-Hope, they have not the General Wind 'till they come to the twelfth Degree of South Latitude; which they have to the twenty-eighth Degree of the fame Latitude.

LIKEWISE in the Sea between Africa and America, between the fourth Degree of North Latitude, and the tenth or eleventh Degree, Seamen have not obferved the General Wind to blow; for when they have failed from St Helena beyond the Equator with that Wind, to the fourth Degree of North Latitude, then they have been without it 'till they came to the tenth Degree of North Latitude ; from which to the thirtieth Degree the North-Eaft Wind is found to blow conItantly, tho' that thirtieth Degree is feven Degrees from the Torrid Zone ; yet in the Parallel of fix, feven, or eight Degrees of Latitude, $\mathcal{E}^{3} c$. it blows in fome Places, but in the tenth Degree in all Places 'till they come to the thirtieth. In the fame manner beyond the Tropic of Capricorn, between the Cape of Good-Hope and Brafil, the South-Eaft Wind blows to the thirtieth Degree thro' the whole Year.

A N D tho', as we faid, this Wind is not fenfible on all Shores, and much lefs in the inland Parts, yet on fome it is fenfible enough; thus on the Shores of Brafil, and on the Shores of the Kingdom of Lowango, in Africa, the South-Eaft Winds blow daily, them.

THERE is a threefold Caufe affigned by $\mathrm{Na}-$ turalifts for this General Wind (for the Antients knew nothing of it, nor of the Torrid Zone itfelf). Some think the Sun's moving from Eaft to Weft is the Caufe of it ; becaufe it rarifies the Air that it goes over ; which Rarifaction follows the Sun, ftill thrufting the Air before it.

O T HERS, viz. thofe who fuppofe the Heavens fixed, and the Earth to revolve, are of Opinion, that the General Wind comes from the Earth's moving from Weft to Eaft, and the Air with it, but not fo faft as we; and therefore that we go againft the Air, or the Air againft us, from Eaft to Weft.

A third Caufe is brought by des Cartes, which is altogether new ; (Part 4. Prop. 49. of his Principles) where he endeavours to fhew that the Moon caufes this Motion of the Air as well as the Tides; but becaufe the Knowledge of his Opinion requires alfo the Knowledge of his other Suppofitions, we fhall not fay any thing of it here; being afterwards to fhew that it cannot be fo. The firft Caufe pleafes us beft; and the fecond feems not to be received; becaufe feveral of the Copernicans do not admit it ; and no Reafon can be thus given why it fhould blow only within the Tropics, and not alfo beyond them (u).
(u) Dr Halley, a Perfon well skilledin Meteorology, as well as in all parts of Phyfics, has, with extraordinary Accuracy, profecuted the Hiftory of the Conftant periodical Winds; which he deduces not only from the Obfervations of Seamen, but alfo from his own Expe-
rience. But he only takes Notice of fuch Winds as blow in the Ocean ; there being fo much inconftancy and variablenefs in Land-Winds, that from them a Perfon can make out nothing clear or certain.

Firt of all then, he divides the Ocean into three ample

PROPOSITION III.

Some Winds bave a fated Time and Period, otbers are unfixed, and blow at uncertain Times.

THOSE are called Stated and Periodical Winds that blow at certain Times of the Year, and

Seas, viz. 1. The Atlantic. 2. The Indian; and, 3. The Pacific Sea; proceeding to defcribe in order, the Winds that generally blow in each of thefe.

In the Atlantic Ocean, thro' the whole Year, blows the Eaft Wind; yet fo as to turn a little South or North, according to the different Situation of Places. Of which Turnings this is the Sum.

1. Seamen near the African Shore, as foon as they have failed paft the Canary Iflands, about twenty eight Degrees of North Latitude, obferve the Wind to blow pretty loud from South-Eaf. This Wind continues with them in their Courfe fouthward 'till they come at the tenth Degr. of North Latitude, provided they be an hundred or more Leagues from the Coaft of Guinea, between which Degree, and the $4^{\text {th }}$ of North Latitude, thereare interchangeably frequent Calms and Hurricanes.
2. They who fail to the Caribbee Iflands, as they approach the Coalt of America, perceive the North-Eaft Wind more and more to retire eaftward, infomuch that fometimes it is full Eaft ; fometimes alfo, tho' rarely, it may turn a little to the

VOL. I.

South; whofe violence they obferved perpetually to abate.
3. As to the conftant Winds, they don't extend further than twenty eight Degrees North Latitude, to the Coaft of Africa, and near the Border of A merica they go to thirty, thirty one, or thirty two Degrees. The fame is obfervable South of the Equator; where, near the Cape of Good-Hope, the Limits of thefe Winds are three or four Degrees further diftant from the Equinoctial Line, than on the Coafts of Brafil.
4. From the fourth Degree of North Latitude to the abovementioned Bounds on the South Side of the Equator, the Wind is obferved almolt perpetually to blow from the intermediate Parts 'twixt South and Eaft, tho' for the moft part 'twixt Eaft and South-Eaft; yet fo, as that thofe who fail near the Coaft of Africa have the Wind turning rather South, but approaching America they obferve it decline fo much to the eaftward, that it almoft blows direct Eaft. I had Occafion to tarry for the Space of a Year on this part of tbe \mathbf{O} cean, during which time the Changes of the Weather were

K k
fo
fo frequent, that I had fufficient Employment in obferving thefe Matters. I found therefore the Wind almoft always to poffefs the third or fourth Point from the Eaft. As oft as it appreached nearer the Eaft, it blew more vehemently and raifed a Storm ; but when it came from the Points more fouthward, it was much more calm, and made the Air clear. But I never perceived a Wind blowing from Eaft to North, or from South to Weft.
5. Thefe Winds undergo fome Change, which is owing to the different Seafons of the Year. For when the Sun paffes the Equator northward a pretty way, this South-Eaft Wind, efpecially in this narrow Tract of Sea between Guinea and Brafil, declines fomewhat more to the South, as the NorthEaft does to Eaft. And again, upon the Sun's entering the Tropic of Capricorn, the SouthEaft Wind approaches nigher to Eaft, as doth the North-Eaft to North.
6. There is found a certain Tract of Sea in this Ocean, which, near the Coaft of Guinea, extends for the Space of five hundred Leagues, from Mount Leo to St Thomas's Ifle, wherein South, or South-Weft, Winds conftantly blow. For the South-Eait Wind having once paffed the Equator becomes conftant, which in our fourth Obfervation we demon-
ftrated to blow to the South of the Equator. About eighty or one hundred Leagues from the Coaft of Guinea, it turns by degrees fouthward, and having turned that Point, it declines to Points near the Weft, 'till touching the very Shore, it either obtains the South-Weft Point, or that 'twixt it and direct Weft. Such kind of Winds on thisCoaft are fix'd, tho' frequently interrupted with Calms and Temperts, which violently proceed from any Air. Seamen allo, much to their lofs, fometimes find the Winds eafterly; which being attended with Clouds and a groffer Air, are very unwholefome.
7.'Twixt the tenth and fourth Degrees of North Lat. in that Tract which is bounded by the Meridjans of Cape Verd, and the remote Iflands adjacent to it, I know not if I can fay that any Wind blows either conftant or variable. The Calm is almof perpetual, the Thunder and Lightening extreamly terrible, and Rains fo very frequent, that from them the Tract is named rainy. If there happen any Winds they go off into Blafts, blowing with fuch inconftancy, that they don't continue for the Space of one Hour, without Calms; and the Ships of the fame Fleet, which are all in Sight one of another, have each of them their proper Winds. On which Account failing is fo difficult in there Places,

Сн Ap. 21. of Univerfal Geography. 499

 after they have ceafed half a Year, and others return in a Month's time : and fome blow once athat fometimes Ships with great difficulty fail thefe fix Degrees in whole Months.

From the three foregoing Obfervations two things may be explained, which Mariners experience in failing betwixt Europe and India, or Guinea.

In the firf Place, that tho' this Sea, in that Part where it is narroweft between Guinea and Brafll, extends no lefs than five hundred Leagues, yet with great Difficulty Ships, fteering their Courfe fouthward, pafs this Tract, efpecially in the Months $\mathcal{F u l y}$ and Auguft; which arifes hence, that during there Months the South-Eatt Wind, blowing on the South of the Equator, paffes it's ordinary bounds four Degreces North Latitude ; and further, turns fo far South, that fometimes 'tis carried frait from that Point, fometimes alfo from the intermediate Points betwixt it and the Weft. When therefore the Courfe mult be fteered againft the Wind, if that be towards the South.Weft Point, they have a Wind that turns more and more to Eaft, as they retire from the Continent of Africa; but the Danger is in paffing the Coalt of Brafil, where Quickfands are fo frequent, But if they go towards South-Eaft, they muft of neceffity comenear the Coaft of Guinea, from which they can't otherwife retire, than by
failing towards the Eaft as far as St Tbomas's Illand.
2. What all Ships loofing from Guinea to Europe, neceffarily do for the Reafon laid down in our Sixth Obfervation. For near the Shore blows the South-Weft Wind, with which they can neither fail, the land lying in the way, nor go fo againft it, as to direct their Courfe northward to Europe. They fail then in a Courfe quite different from that intended, viz. either South, or to the Point next to Southeaftward. Following this Courfo they indeed retire from the Shore, but have the Wind more and more contrary, and are obliged to fleer ftill more to the Eaft, 'till they make the Ifland of St Tbomas, and the Lopefiaz Cape; wherefinding a Wind declining from South to Eaft, fail wefterly with it 'till they come to the fourth Degree of South Latitude, where they find a South-eaft Wind blowing perpetually.

On Account of thefe conftant Winds, all Mariners who fail to America, or Virginia, firft fteer fouthward, that by the Affiftance of this conftant EaftWind they may be carried weftward. For the fame Reafon, they who come from thofe Countries for Europe, directing their Courfe northward, endeavour, as foon as polfible, to come at the thirtieth Degreee of North Latitude. For here, firft, thev find the Winds variable; Kk 2

Day. The ftated Winds are otherwife fubdivided, viz. fome when they begin to blow, continue for fome
yet more frequently blowing from the South-Wef Points.
II. As in the Atlantic, fo in the Indian Ocean, the Winds are partly conflant, and partly periodical; that is, they blow for fix Months in one Point, and the fix following in the very oppofite Point. Both thefe Points, and the Seafons at which they turn to the oppofite Sides, differ with the Places. And tho' it be matter of great difficulty to oblerve how the Tracts of the Sea may be defined when fubject to each periodical Wind, or Monfoons as they call them: Yet having ufed clofe Application, I don't fcruple believing the following Particulars.

1. Betwixt ten and thirty Degrees of South Latitude thro' that Tract of Sea bounded by St Laurence's Inland and New Holland, the South Eaft Wind blows all the Year ; yet fo as to be fomewhat nearer the Eaft tban South ; juft as about the fame Latitude in the Atlantic Sea, we above fhew'd them to be.
2. That South-Eaft Wind blows, from May to November, to the fecond Degree from the Equator; in which Month of November, between the third and tenth Degrees of South Latitude, near that Meridian which paffes thro' the northern Past of St Laurence's Inand,
as alfo between the fecond and twelfth Degree about Sumatra and $\mathcal{F a v a}$, arifes a Wind contrary to the former, viz. the North-Weft, which reigns the other fix Months; viz. from November to May. This Motion of Winds is found to extend to the Molucca Iflands.
3. Northward from the third Degree of South Latitude, in all the Arabian or Indian Sea, and in the Bay of Bengal, from Su matra as far as the Shore of A frica, is obferved a Motion differing from the former, breathing from the North-Eaft Climates from October to April, which for the next fix Months rifes from the oppofite, or South-Weft, Points. Then it breathes more violently, and brings Clouds and Rain; but upon the blowing of the NorthEaft Wind the Heavens become ferene. But it is to be obferved, that in the Bay of Bengal the Winds keep neither their Force nor their Points with the fame Conftancy, as in the Indian Sea. Alfo the SouthWeft Winds, near the African Shore, decline more fouthward; near India, more weftward.
4. On the South of the Equator, that Tract of Sea, which lies between Africa and Laurence IIland, and which goes as far as the Equator, feems to appertain to the Motion of Winds juft now laid down. For in thefe Places the South.Weft Wind blows from Oaber to

Chap. 21. of Univerfal Geography. fome Months, fome for half a Year, fome for a Month, and fome for a few Days.

AMONG

April, fomewhat nearer the South; but fuch as fail to the North perceive it decline towards the Weft, which at length coincides with the periodical South-Welt Wind, which they fay blows at that Seafon of the Year, from the North Side of the Equator. But what Wirds during the reft of the Year, reign in that Sea, I cannot fufficiently determine: becaufe our Sailors, in their return from India, fteer their Courfe beyond the Ifland of St Laurence. This only I could learn, that the Wind for the moft part comes from the eaftern Points, fometimes declining to the North, and at other times to the South.
5. On the Eaft of Sumatra, and North of the Equator, as alfo on the Coafts of Camboia and Cbina, the periodical NorthEait Winds come nearer to North, as do the South-Weft Winds to South. And this is obferved to hold 'till you have gone beyond the Pbilippine Inands on the Eaft, and as far as $\mathcal{F} a$ pan towards the North. In the Month October, or Nucember, a northerly Gale arifes; and in May a foutherly, which continues from that time during the whole Summer. But it is to be marked, that the Points of the Winds are not fo fteadily fixed in thefe Parts, as they are in other Seas: fo that fometimes the South Winds decline a Point or two towards
the Eaft, as the northern do towards the Welt : which feems to take it's rife from the Bulk of the Lands, that are every where interpofed in this Sea.
6. About the fame Longitude on the South of the Equator, viz. in the intermediate Space between the Iflands Sumatra and $7 a v a$ lying to the Weft, and New Guinea to the Eaft, nearly the fame periodicalWinds blow from the North or South; but fo that the North Winds incline to the Weft, and the South to the Eaft. And there blow with the fame inconftancy and fhifting of the Point, as thofe of the Quarter abovementioned; but the Motions begin four or fix Weeks later than in that Sea.
7. The Change of thefe Motions does not happen fuddenly, or at once; but in fome Places there are Calms, and in others changeable Winds. And often on the Shore of Cormandel, towards the end of the accidental Motion; and the two laft Months there arife furious Tempefts in the Cbinefe Sea; with the periodical Wind at South.

All Navigation in neceffarily regulated according to thefe Winds; for if Sailors fhould delay the Seafon 'till the contrary Motion begins, they muft either fail back, or go into Harbour, and wait for the return of the Trade. Wind.

Kk 3
III. The

AMONG thefe the chief are thofe which Sailors find to blow, for fome Months, in fome Parts of the
III. The third, or Parific Ocean, Atretches nearly as far as the two former taken together ; viz. one hundred and fifty Degrees, from the wefternShore of America to the Pbilippine Ines. But as this is failed by very few befides the Spaniards, from Spain to the Manilbas, and that only once a Year; whilft they conftantly take the fame Courfe; it remains in a great Meafure unknown to us; and cannot therefore be defcribed with the fame exactnefs as the reft. Thus much is certain; as well from the Obfervations of the Spaniards, as others, that the Winds which blow here have a great affinity with thofe in the Atlantic ; for the NorthEaft blows to the North of the Equator, and the South-Welt to the North of the fame, with fuch 2 Strength and Conflancy, that the vaft extent of this O cean may be failed in about ten Weeks, without fhifting the Sails. Here alfo are no Tempefts, fo that failing is no where focommodious, as neither Wind is wanted, nor it's Violence to be feared. Whence fome imagine, that it is as fhort a Voyage thro' the Streights of Magellan to Cbina or Japan, as by doubling the Cape of GoodHepe.

Thefe Trade-Winds extend not to above thirty Degrees of Latitude on both Sides of the Equator, as in the Atlantic O cean. This appears in part from
the Courfe obferved by the Spaniards returning from the Ma nilbas to New Spain; for by means of the fouthern Wind, which blows in thefe Iflands during the Summer Months, they fail to the South up to the Latitude of Japan; where they firlt meet with various Winds that will carry them to the Eaft. And in part again, from the Obfervations of Scbooten and others, who failing to India thro' the Streights of Magellan, found almoft the fame Diftance of the Winds on the South of the Equator. And in this alfo the Winds of the Pacific agree with thofe of the Atlantic Ocean; that near the Coaft of Peru they approach to the South, as on the Coalt of Angola.

That the Reader may form the better Notion, we fhall add a Figure (fee Fig. 30.) reprefenting to the Eye all the Quarters and Points of all the Winds. The Limits of each Tract are marked with pricked Lines, as well in the Atlantic, whether they fepa. rate the variable Winds from the conftant, as in the Indian Ocean, where they alfo feparate the different Morfoons from one another. The eafieft way of marking the Quarters of the Winds feemed to be by a Series oflittle fharp-headed Lines, pointing alternately to the Parts of the Horizon from whence the Winds blow. But as the Pacific

Снар. 21. of Univerfal Geography.

Sea; and thefe (as alfo the times of their blowing) are called Monsoons; which are found chief-

Pacific Ocean is fo extreamly large, and yet in a great meafure unknown to us; I was unwilling to exhibit the whole, to prevent enlarging the Map beyond a reafonable fize.

There arifes, from the Premifes, various Queftions worthy the Confideration of Philofophers: the principal are thefe. 1. Why does the Wind in the Atlantic and Pacific Ocean, continually blow from the Eaft within thirty Degrees on both Sides the Equator? 2. Why is not the like conftant Wind found beyond thefe Limits? 3. Why is the WeftWind found perpetual near the Coaft of Guinea? 4. Why, in the northern Part of the Indian Ocean, do the Winds for fix Months confpire with the aforefaid Winds; and for the other fix, blow from the oppofite Point; whillt that part of the fame Ocean which lies on the South Side of the Equator, has no other Winds but what are found in other Seas ? 5. Why do the conftant Winds on the North Side of the Equator incline to the North; and on the South Side to the South; 6. Why in the Cbinefe Sea, chiefly, is there fo remarkable an Inclination of the Winds to the North?

For the folving of thefe Problems, I offer the following Particulars to the Confideration of the Learned.

Wind is properly defined a Current, or Motion of the Air,
which if conftant, or perpetual, mult have a permanent or conflant Caufe. Some imagine this Caufe to be the annual Revolution of the Earth about it's own Axis. This might perhaps be allowed, if almoft continual Calms were not found in the Atlantic Ocean near the Equator ; and alfo Weft Winds upon the Coaft of Guinea, and wefternTrade-Winds in the I_{n} dian Ocean, under the Equator. Befides, the Air being a ponderous or gravitating Body, it will acquire the fame Velocity as the Earth ; and as it rolls along therewith in the annual Motion, it will feem more to do it in the diurnal; which is not above a thirtieth fo fwift as the other. So that fome other Caufe mult be fought for.

The true Caufe we judge to be the Sun continually permeating the Ocean; with the Addition of the Nature of the Soil and adjacent Country.

For by the known Laws of of Hydroftatics, that part of the Air which is moft rarified by Heat, is the lighteft ; and confequently the others tend towards it, 'till an aqilibrium be obtained. But as the Sun continually moves towards the Weft; it is manifeft that the Air, moft heated by it's direct Rays, mult thus move the fame way; and therefore the whole Mafs of the lower Air. By this Means there is produced a general Eaft Wind, which $\mathrm{K}_{4} 4$ putting
putting all the Parts of the Air, relting upon the vaft Ocean into Motion, they all keep their own Motion 'till the Sun returns ; whence the Eaft Wind becomes perpetual.

And hence it follows, that the Wind on the North or South Side of the Equator, ought to incline towards the North or South. For as the Air near the Equator receives the Sun's Rays perpendicularly, twice every Year, and never more inclined than thirty De grees, it muft of courle be greatly rarified by fo great a Heat. Near the Tropics allo the Sun is vertical, for a confiderable Time; but as it is diftant therefrom forty-feven Degrees for no lefs a time; the Air hence becomes fo cold that it cannot afterwards be brought to the fame Degree of Heat, which it receives under the Line. Whence the Air, being lefs rarified on both Sides the Equator, flows to the middle. And this Motion being compounded with the Eaft Wind abovementioned, explains all the Phænomena of the general Winds; which, if the Surface of the Earth was every where covered with Sea, would blow with the fame conftancy they do in the Atiantic and Etbiopic Oceans.

But as the Ocean is interrupted with fuch large Tracts of Land, regard mult be had to the Nature of the Soil, and the

Pofition of high Mountains; to which two Caufes the Changes of the Wind feem principally affignable. For when a Country lying near the Equator is low and fandy, the Heat of the Sun, reflecied by the Sand is fo great as to be almoft incredible. And thus the Air of this Place being highly rarified; the denfer Parts of the Air will neceffarily move thither to reftore the Aquilibrium. Whence I judge, that near the Coaft of Guinea the Wind conftantly blows to the Land; as it is exceeding probable that the inner Parts of Africa are violently heated: fince even the moft northern Parts thereof, by reafon of their Heat, made the Antients believe all the Parts beyond the Tropics uninhabitable.

And hence we may explain thofe frequent Calins; mentioned above in our fixth Obfervation. For as that Part of the Atlantic lies betwixt the Wert Winds perceived near Guinea, and the conftant Eaft Wind that blows in the Parts fomewhat more to the Weft, the Air lying thereon giving way to neither of thefe contrary Winds, keeps it's Place, and makes a Calm. And the Air not able to fupport the Vapours here plentifully raifed by the Heat, as being more light and rarified; the oppofite Winds frequently caufe the Rains tp fall heavy. ry material, when Sailors go to the fame Point,

And hence it appears, that the Part of the Air rarified by Heat, being conftantly compreffed on all Sides by the colder and denfer Air, that furrounds it, muft be continually driven upwards, as it were like a Vapour, and be there every way equally difperfed to maintain the Equilibrium; fo that the upper Courfe or Motion of the Air fhall be contrary the under. And thus, as it were by a circular Motion, the conftant Winds that blow near the Earth, produce another Wind that blows a contrary way in the upper Regions of the Air. And this Conjecture is alfo in part confirmed by Experience. For when Sailors are got beyond the Limits of the Trade-Winds, they immediatly find a Wind blowing from the oppofite Quarter. And hence alfo we may eafily explain the Phænomena of periodical Winds, or the return of the Monfoons; which as it fearce admits of any other Solution, fo it confiderably confirms our Hypothefis of the circular Motion of the Air.
For fuppofing this circularMotion of the Winds, we mult obferve that the northern part of the Indian Ocean is every where interfperfed with Land, running out within the Limits of the periodical Winds, viz. Arabia, Perfia, India, छ'c. which Countries at the time the Sun is in the northern Signs of the Eclip: tic, fuffers the fame Heat we
above mentioned of the inner Parts of Africa; but when the Sun declines to the South they enjoy a temperate Air. But this is owing to the long Ridges of Mountains whofe Tops being generally covered with Snow in the Winter ; this greatly cools the Air. For this Reafon the general North-Eaft Wind blowing in the Indian Sea is at one time of the Year hotter, and at another colder than the Wind carried circularly from the South-Weft ; which is the hottelt of thefe contrary Winds; when it blows thro' the upper Region of the Air; it follows that the under Courfe of the Air one while moves from the North-Ealt, another from the South-Weft; from the later in the Summer, and from the former in Winter; as we obferved in explaining the Phonomena of the Trade-Winds.

From the fame Caufe it feems to proceed, that the NorthWeft Wind fucceeds the SouthEaft in a certain Tract of the Indian Ocean, lying without the Equinoctial, at the time that the Sun approaches the Tropic of Capricorn.
But here we mult not conceal, that there is a great dify ficulty in explaining the Reafon why in the fame Latitude of the Indian Ocean there Winds are found, there is a perpetual Eaft Wind in the Atlantic without any Variation $2 t$ all. the Winds are unfettled ; and the Sailors fometimes furprized with Calms ; and the Sea-Waves move feveral Ways ; yea and frequent Storms arife. Some of the Monfoons return twice in a Year, but not with the fame Vehemence.
I. IN that part of the Atlantic Ocean which lies in the Torrid Zone, and that alfo in the Temperate, the North Wind blows frequently in the Month of Oitober, November, and Fanuary; and thefe Months are the beft times to go from Europe to India, that they may get beyond the Equator with the help of them; for it hath been found, that fome Ships that had gone from Europe in Marcb have not come fooner to Brafl than thofe that left it in Oitober ; coming both to it in the Month of February; being helped by the North Winds: But becaure this Wind is not fo conftant and certain, Seamen do not reckon it among the Monfoons. Nor is it eafy to give the caufe of that Wind in thefe Months; except we refer them to the great quantity of thick Vapours at that time, or the conftant preflure then made by the heavy Clouds. And they that wintered in Nova Zembla fay, there was a conftant North Wind all the Winter; which could not be by a Rarefaction of the Air made by the Sun, which was under the Horizon. Yet we

> It is alfo very difficult to explain why the Limits of the conthant Winds fcarce reach beyond thirty Degrees of Latitude; as alfo why Monfoons are found
only in the northern part of the Indian Ocean ; whillt in the South part the North-Eaft Wind perpetually reigns. think it may be maintained in the general, that moft of there Monfoons come from the melting of the Snow, or the diffolution of the Clouds in the North and South Places, efpecially the Mountains which I am apt to believe, becaufe thefe Monfoons blow, for the moft part, from the North or South, or the Points collateral ; and becaufe the Snow and Clouds in the northern Parts are diffolved by the Sun; efpecially in that half Year it goes thro' the North part of the Ecliptic, the Monfoons are then from the North, and in the other half from the South.

T H E Caufe of thefe Monfoons in the Sea, blowing moftly from collateral Points, as South-Eaft, North-Eaft, or thofe next them, feems to be from the different Situation of the Places in which the Snow and thick Clouds are ; or from the general Wind which may divert them to another Point: for that Wind blowing to the Weft, and the Monfoons tending North and South, they muft hinder one another; and thus go in a Point between the Cardinals. But the South-Weft and North-Weft Monfoons are rare and weak, and are fcarce to be reckoned Monfoons, when the North and South Winds feem fometimes by accident to decline to the Weft, but are drawn to the Eaft by the general Winds. There are required for giving the Caufes of the great variety of the Monfoons in different Places, more accurate Obfervations, not of one Year only, but of feveral Years; with the Times of the Winter, Rains, Snows, and of the Mountains in thofe Places from which the ftated Winds blow. We fhould alfo know the Motion and Age of the Moon; which may caufe a Change in this Matter.
2. IN the Month of $\mathcal{F} u l y$, and fome Months near it, the South Winds blow at Cape Verd in Africa (when there is a Winter of a ain there) which feems Wind blows in September.
4. AT Patanen (which is a Kingdom and a Town of the fame Name in India, beyond the Mountains of the Gate) there are conftant Rains, and a North-Eaft Wind that blows; but in the other Months an Eaft Wind blows thro', and 'tis Summer then.
5. A B OUT Sumatra the Change of the Monfoons is in November and December.
6. I N the Inland of del Mayo, one of the falt Ines in the Azores, there blows a vehement Wind in the end of Auguft from the South, with much Rain, which moiftens the Land, that is naturally dry, and then the Grafs begins to fpring up; which fattens a great many Goats there, againft the end of December.
7. I N the Kingdom of Congo in Africa, from the middle of March to September; when the Winter reigns there, the North, Weft, and North-Weft Winds blow, or others intermediate, which force the Clouds together on the Tops of the Mountains, and caufe a dark Air with Rain (fee the next Propofition): but from September to March the Winds are contrary, being South, Eaft, and South-Eaft, and others intermediate. We have taken thefe differences of the anniverfary and fated Winds from the Obfervations of Sailors, who call them Monfoons when they blow for a great way on the Sea. We would now treat of their Caufes; but we want to know the Mountains, Snows, and the Times of their diffolving, and other things ; nor are the Obfervations of Sailors fo exact as to deferve an accurate Enquiry into their Caufes.

THE Monfoons that are moft famous are; : Thofe in the Indian Ocean, between Africa and

Снар. 21. of Univerfal Geography.
India; and at the Molucca Ines they begin in $7 a$ nuary, and blow to the Weft fix Months to the beginning of Fune; and in September and Auguft it begins to blow to the Eaft; and in fune, fuly, and Auguft, there is a Change of the Monfoons and raging Storms from the North. But when we fpeak of Winds blowing to the Eaft or Weft, we underftand alfo the collateral Points.
2. BUT at the Shores, the eaftern Monfoon varies much; fo that only from Fanuary to the end of March or the middle of May, the Ships that go to Perfa, Arabia, Mecba, and Africa, only fail when they come from India on this Side the Gate, or the Shore of Malabar; for the Storms rage in the end of May, and all Fune, $\mathcal{F u l y}$, and Auguft, with a North Wind often, or a raging North-Eaft Wind; therefore no Ships go from India on this Side the Gate in thefe Months. But on the Shore of India, beyond the Gate, or the Eaft Shore, or the Shore of Cormandel, they know nothing of thefe Storms. They fail in the Month of September from Ceylon and Java, and other Ines there to the Molucca Ines; for then the Weft Monfoons begin, that hinder the general Eaft Wind: but when they come to the fifteenth Degree of South Latitude, from the Equator, the weftern Monfoon is fenfible in the Indian Ocean, and a general South-Eaft Wind fills the Sails.
3. FR OM Cocbin to Malacca, i.e. from Weft to Eaft, they begin to fail in Marcb; for then the Weft Monjoons begin there, or rather the NorthWeft Wind blows often.
4. I N the Kingdom of Guzarat, i.e. in India on this Side of the Gate the North-Wert Winds blow the half of the Year from March to September, and the other half Year the South Winds and that without much hindrance by other Winds.
5. THE Dutch fail from Fava, for the moft Part, in the Months of fanuary and February, when they return to Europe; they fail then with an Eaft Wind to the eighteenth Degree of South Latitude. Here the South Wind begins, or the South-Eaft with which they fail to St Helena.
6. 'TH O' in the Indian Ocean, from Fanuary to Fune, the Monfoons are Eaft, and from Auguft to Fanuary Weft; yet, in feveral Parts, when you are to fail from one Place to another, there are fome fet times that are counted beft; becaufe the collateral Winds blow more or lefs at thofe times or other Winds do more or lefs mix themfelves with thefe. Therefore they take one Monfoon when they are to fail from Cocbin to Malacca; and another when they are to go from Malacca to Maccou, a Port-Town in Cbina; and another when from Maccou to Fapan.
7. A T the Ine of Banda the weftern Winds ceafe at the end of March; and at the end of April the Winds are variable, and become calm on a fudden; and in May the vehement Eaft Winds begin, with Rain.
8. A T the Inle of Ceylon, near the Cape of PontoGallo, on the fourteenth of March there is firft a weftern Wind, then a conftant South-Weft from the end of March to the firt of OEEDEbr ; then the North-Eaft Wind begins, and blows to the middle of March: but fometimes the Monfoons come fooner or later by ten Days or more.

IN the Voyage from Mazambique, in Africa, to Goa, in India, the South Winds rule all the way to the Equator, in the Month of May and Fune but from the Equator to Goa the South and SouthWeft Winds prevail in the Months of July and Auguft, and the following Months.
10. I N the thirty fifth Degree of the Elevation of the Meridian that paffes thro, Triftan de Conba, the Weft Wind rages in the Month of May, at New-Moon.
II. IN two Degrees thirty Minutes North Latitude, the South Wind prevails on the Sea feventy Miles from Guinea, from the twenty fifth of April to the fifth of May (but not on the Shore, or Guinea itfelf); and after the fifth of May the fame Wind is felt at three, and three Degrees and thirty Minutes Latitude.
12. A T the Ine of Madagafar the North and North-Wert Winds prevail from the fifteenth of April to the laft of May; but in February and March the Winds blow from Eaft and South.
13. FR OM Madagafcar to the Cape of GoodHope, both thro' Sea and Land, the North Wind and the Collateral to the Eaft, blow continually in the Months of Marcb and April; fo that 'tis counted a wonder if a South or South-Eaft Wind fhould blow then for two Days.
14. THE South Wind is vehement in the Bay of Bengal after the twentieth of April; and after that the South-Weft and North Winds are ftrong.
15. T HE South and South-Weft Winds, and oftentimes the South-Eaft, ferve for failing from Malacca to Maccou, in the Months of Yuly, OEtober, November, and December; but in Yune, and the beginning of folly the Weft Winds rage about Malacca in the Sea of Cbina.
16. T HE Wind by which they fail from fava to Cbina, i. e. from Weft to Eaft, begins with the Month of May.
17. T HE Wind by which they fail from Cbina to fapan, i.e. from Weft to Eaft, prevails in the Months of $\mathfrak{F u n e}$ and $\mathfrak{F u l y}$; which is a South-Weft Wind; tho' oftentimes there comes in a North Wind, and others collateral to it eaftward; and that chiefly in the Day-time : but in the Night there comes in a South-Eaft Wind, and South by Eaft.
18. BU T when they fail from fapan to Maccous i.e. from Eaft to Weft, in February and Marcb, there is an Eaft and North-EaftWind; but thefedo not prevail on the Sea, but at the Shores of Cbina; which they that fail from fapan find in theirV oyage.
19. WHE N they fail from the Pbilippines, or Cbina, to Aquapulco, a Port in New Spain, there is a Wert Wind in Yune, Fuly, and Auguft; tho' very weak, except at Full Moon; but they are moflly South-Weft Winds. But they keep from the Torrid Zone near the northern Shores of America to fhun the general Eaft Wind, tho' 'tis but weak then; for 'tis to be known in general, that the weftern Winds are more weak than the eaftern, becaufe the former are hindered, and the later promoted by the general Wind.
20. IN the Sea of Cbina the South and SouthWeft Monfoon is in fuly, Auguf, and Oztober; but thefe Winds turn to the Eaft : for they never turn immediately to the South, but firt they blow fome Days to the Eaft, and then to the South ; tho the North-Eaft Wind is fometimes changed, on a fudden, to the South-Weft, and fometimes from the North to the South immediately; which is very common here.

THUS the more conftant anniverfary Winds are found at Sea ; both thofe that are lefs conftant, and thofe alfo that are anniverfary, as well on the Shores as Places near the Shores.

PROPOSITION IV.

The Etefian or anniverfary Winds in Greece, proceed from the Rains and Snows melted on the Mountains.

THE Grecians obferved two Kinds of flated Winds each Year, which they called Etefia ; 1. The Summer,

Summer, or Dog-winds, which were called Etefiee in general ; becaufe they were more ftrong and fenfible. 2. The Winter-Winds, which they called Cbelidonian or Ornitbian.

THE Etefian Dog-winds are from the North. Writers differ about the time of their beginning. Arifotle, having told us they blow after the Summer Solitice, adds nothing of the exact time; which was a great neglect: and the more becaufe when he fpoke of the Ornitbia he omitted both the time and the part they came from. Moreover, they who have marked the time of thefe Etefice, have made their forerunners, which is about eight Days fooner, to begin when the Dog-far rifeth, on the fixth or fifteenth of Fuly; and to continue forty of the Dog-days, and fo end with Auguft : tho' others extend them to the middle of September. They blow only in the Day-time: nor do they come early in the Morning; which made the Seamen call them delicate and lazy.

T H E Caufe of thefe Winds is no doubt the melting of the Snow on the northern Mountains, by the Heat of the Sun, which is then at the greateft; having for feveral Months fhone on thofe Mountains, without fetting. And with this Caufe it agrees well that they ceafe at Night ; becaufe then the melting ceafes, or is fmaller than to make aWind, the Sun being then near or under the Horizon.

THIS fame northerly Dog-wind, not only in Greece, but alfo in Thracia, Macedonia, the Agean Sea, and it's Ines, (which I know are fometimes all included in the Name of Grecee) yea in Egypt alfo, and Africa, and probably the fame that we faid in the former Propofition, did blow in the Kingdom of Congo, beyond the Equator, between March and September ; we fay this fame Dog-wind, $\Xi^{\circ} c$. are the fame with the Etefice of the Grecians, or come from the fame Caufe. And likewife that

VOL.I
North

North Wind which we faid blows in the Kingdom of Guzarat, from March to September, proceeds from the melted Snow on the Mountains of $A f_{i} a$; which they called the Sarmatian Mountains, and the Earth's Belt; and therefore we reckoned it among the Monjoons.

THE fecond anniverfary Wind of the Grecians, is the Cbelidonian, or the Bird's Wind; which they tell us began after the Winter: but they do not tell us the Day when it began. Thefe are South Winds contrary to the Dog-winds, very weak, and likewife inconflant, and of lefs Duration; which makes the Sea pleafant, and fignifies the coming of the Winter Birds, which they call Cbelidons. Aripootle fays they blow by turns to the middle of Summer, 'till the eafterly Winds, or Dog-winds, from the North, begin, but very weakly.

THEIR Caufe is alfo the melting of the Snow on the Mountains of the Moon in Monomotapa, which are called fnowy by the Portuguefe: which Snow the Sun melts and rarifies the Air thereby; becaufe 'tis Summer there, when 'tis Winter with us and in Greece; the Sun then being in the South part of the Ecliptic. And this Wind is alfo found in the Kingdom of Congo, in Egypt, and in the Agean Sea; and the like in Guzarat, but for many more Months: for it begins in Congo and Guzarat in September, and blows'till March.

IT was the yearly Wind among the Grecians; which they called Ornitbias, or the Bird-Wind; and they faid it continued after the vernal Equinox, while the Sun was mounting to our Zenith.

PROPOSITION V.

Why thefe Etefian Winds do not blow in Italy, Germany, Pruffia, andotber Kingdoms, fince they are nearer the Mountains in the North, from wobich the Etefian Winds of the Grecians blow, as wee faid.

Сhap. 21. of Univerfal Geograpby.

THIS Queftion hath no fmall difficuly in it; and I could wifh to have more accurate Obfervations on this Head, to determine what Winds then blow in the feveral Places; or if they return again each Year; for I remember to have read, that in Aquitania, a part of France, there is an anniverfa* ry Wind.
BUT if any thing be faid to this Queftion, thefe Particulars feem proper; 1. In our Dog-Days the North Wind blows, which cannotbe denied. 2.'Tis not fo conftant, nor doth it return every Year; perhaps it may not be felt, becaufe of the frequent blowings of other Winds. 3. It might be faid; the Mountain whereon the Snow begins firt to melt, is fituated directly towards Greece ; and therefore the firft DogWind is carried thither; and the Vapours from the Snow on the reft of the Mountain is carried thither; becaufe they then find an open Paffage that way: but thefe extemporary Thoughts I fhall lay afide, fo foon as I find better from better Obfervations.

PROPOSITION VI.

Some Winds are proper, and almoft perpetual, to fome Place or TraEE of the Earth, otbers inconftant.
THERE are few Places where a Wind blows always; the principal are thefe: viz. 1. Places under the Torrid Zone, efpecially the Parts of the Pacific and Ethiopic Sea in that Zone have a perpetual Wind from the Eaft, or fome collateral Point, which we called, Prop. II, a general Wind. And this Wind is not fo much to be termed proper as common, or belonging to many Places; for 'tis by accident that 'tis not felt in all Places; viz, becaufe other Winds blow more ftrongly. The Caufe of it is given in the forecited Place.
2. ON the Shores of the Kingdom of Peru and Parts of Cbili, and the adjacent Places on the Sea,
the Wind is almoft perpetually South, or in fome collateral Point to the Weft. It begins at the forty fixth Degree of Latitude, and blows to Panama at the American Ifthmus, and makes the Ships (loaded with Gold and Silver) come from Lima to Panama, in a few Days; tho' it takes a great many Days to return: but in Places remote from the Sea this Wind doth not blow. 'Tis hard to give the caufe of this Wind; becaufe the South Land, from which it feems to blow, is not yet known to us; yet I fuppofe there are found therein Mountains continually covered with Snow, from the conftant meltings whereof thefe Winds blow. But I would not here prepoffefs the Reader's Judgment with my Conjectures. Perhaps the Snows that are found at the Streights of Magellan, all the Year, are the Caufe of this Wind. But yet thefe Mountains lie from the South eaftward, and the Winds blow from a Point declining from the South weltward. Let us then leave this 'till we have a better knowledge of the South Continent.
3. A T the Shores of the Magellanic Land, or del Fuogo, about the Streights of La Maire, there blow almoft conftant Weft Winds ftrongly; fo that the Trees decline from a perpendicular to the Eaft. Nor is there any Place where thefe Weft Winds blow fo much. But on the other Side of the Streights of La Maire, the South Wind blows on the Shores of the South Land. I can give no other reafon for it than the melting of the Snow, and the breaking of the Clouds in the South Land; which extends itfelf on the Weft Side of that Streight, from South to North. Thefe Things are doubtful, and to be more diligently enquired into.
4. ON the Shore of Malabar, in India, the North and North-Weft Wind blows almoft the whole Year. The Caufe is the melting of the Snow on the Mountains of Sarmatia, in Afia, as thofe

CHAP. 21. of Univerfal Geograpby. of Imaus, Caucafus, or from the Clouds on other Mountains in Afra that prefs the Air below.
5. ON the Sea, near Guinea, the North-Weft Wind blows frequently; but further off the NorthEaft Wind blows.
6. HALF way between Japan and Liampo, a Sea-Port Town in Cbina, the Weft Winds blow all the way to fapan, thefe blow there in November and December.
7. AT the Inand Guoton, not far from the Inand dos Cavallos, the South Wind is frequent on the Cbinefe Sea; whilft on the adjacent Seas the North Wind rages.

PROPOSITION VII.

Thofe Winds that blow for fome Hours every Day, in fome Places, at a certain Time of the Year, belong to the periodical or flated Winds.
THEY are found to be twofold; but only in fome Places near the Sea. Some blow from the inland Parts to the Sea; others again from the Sea to the Land: the former is called a Land-Wind, the latter a Sea-Wind.
I. ON the Malabar Shore in the Summer-time, from September to April, the Land-Winds blow from twelve at Night to twelve at Noon, which are Eaft Winds; nor are they fenfible beyond ten Miles on the Sea; and from twelve at Day to twelve at Night the Sea-Wind blows from the Weft, but fo weakly that Ships have little Benefit from it. The former Eaft Winds I fuppofe come partly from the general Wind, and partly from the Clouds on the Mountains of the Gate : but the Caufe of the latter is the diffolving of the Clouds by the weftern Sun; which Clouds were forced together by the Eaft Winds. Thefe are my Conjectures; but in other Months the North Wind rages there, as alfo 1.13
the
the Eaft, North-Eaft; nor are the gentle Land and Sea-Winds fenfible there, for the frequent Storms.
2. AT the Town of Mafulipatan, on the Shore of Coromandel, the Land-Winds begin to blow on the firft Day of Fune; they laft only fourteen Days, and then it is the Ships go from thence. But thefe are rather to be referred to the Monfoons; for fo far as I underftand from Sailors Accounts, the Land Winds are conftant on thofe Days; nor do the Sea-Winds come after them.
3. ON the American Shore of New-Spain the Land-W inds blow to the Pacific Sea at twelve at Night; but the Sea-Winds in the Day.
4. IN the Kingdom of Congo, and the Provinces of Lopo Confalvo, the Land-Winds blow from the Evening to the Morning, when the Sea-Winds begin to blow and mitigate the Heat of the Day.
5. AS to the Eaft Winds which blow before and at Sun-rifing, every Day, in all Places, efpecially at Sea, when other Winds blow not, particularly in Brafil where they blow every Day in the Morning; the Caufe is plain: for either they are a Part of the general Wind, or elfe the Sun rarifies the grofs Particles of the Air that were condenfed by Night.
6. THE Etefian Winds of the Grecians, or their Cbelidonian Winds, come among thefe 2uotidian Winds.
7. ON the Shore of Cambaya à Varella, at PuloCatte, the Land and Sea Breezes fucceed one ano= ther daily, from the twenty eighth of Fuly to the fourth of Auguft; for then the Monjoons ceafe, and there is a perfect Calm for a while. The Land Breezes are from the Weft and North-Weft. But the Sea Breezes are from the Eaft, and the collateral Points which turn to the North; and then turn back to the South; when 'tis calm 'till the Land

Chap. 21. of Univerfal Geography.
Land Breezes come, which are not felt on the Sea above two Miles from the Shore. Thefe Land and Sea Breezes are alfo found at Havanna in A merica.

PROPOSITION VIII.

The nearer we come to the Equator from the Arctic Pole, the nortbern Winds are the weaker; and beyond the Equator the South Winds are frong, and cold and dry, especially in Chili and Peru.
THE Caufe of both is the fame; becaufe they come from the northern and fouthern Places: yet there are found South Winds in the northern, and North Winds in the fouthern Parts.

PROPOSITION IX.

It appears from what batb been faid, that there are four different kinds of Winds.

1. THE Common, which blow in all Places, and all times; except hindered by others, as the General one.
2. THE proper, or fuch as blow at all times, but only in a certain Place or Tract of the Earth.
3. THOSE which blow in feveral Places, but not at all Times, as the Monfoons, or Quotidian Winds.
4. THOSE which blow neither at all Times, nor in very many Places.

PROPOSITION X.

Some Winds are fudden, and Arons, but do not laft long; fucb are Hurricanes, with, and without Ligbtening; Wbirlwinds, Storms from the Water, and from the Air. Thefe are in fome Places anniverfary: and fome are only frequent in certain Places at Sea.
THE Wind called Prefler; is a ftrong Wind that breaks out with Lightening and Flame. Such

$$
\mathrm{L}_{4} \quad \text { feldom }
$$

feldom happen, and fcarce without the Ecnepbia; Senoca calls Prefter a Whirlwind with Lightening.

THE Ecnepbia is a ftrong and fudden Wind that breaks out fiom fome Cloud; which is frequent in the Etbiotic Sea, between Brafil and South A frica; efpecially at the Cape of Good-Hope, and on the other Side of Africa, at Terra de Natal, and at Guinea, under the Equator. The Portuguefe call them Travados, the Latins Procella, but the Greck Word Ecnepbia is beft: they are moft frequent in certain Places, and in certain Months of the Year.

A little Cloud, and fometimes feveral of them black or blackifh, are plainly feen by Sailors to go together, and increafe even in a clear Sky, before the Wind breaks out ; and when they firft fee them, they fhould gather in their Sails, and prepare their Ship againft the raging Wind that is at hand: but before the Portuguefe knew this Prognoftic of Wind they loft feveral Ships, being the firft that had failed the Etbiopic Ocean. For when India was made known by Gamma, the King of Portugal fent a greater Fleet of Ships, of large Bottoms, to the Number of thirteen, under Cafrali in the Year 1500 ; which was the firft Fleet fent to Brafil, with great Joy to the Porluguefe.

WHEN they had waited there the Month of Aril, they failed in May towards the Cape of Good-Hope, with raging Storms; and tho' they faw the Signs thereof, yet they knew not the Tempeft that was to follow; which Maffeus thus defcribes.

- THEY made a long Run of almoft two ' hundred Leagues from Brazil towards the Cape
' (which is about one thoufand German Miles) the
\& Ocean and Winds all the while raging. Having
- entered that Voyage in May, with more Bold-
' nefs than Succefs, a fiery Comet appeared con-
- tinually to the tenth Day, with a fearful Afpect;
' and the Sea and Heavens often changing; the
- black
black and foul Clouds having gathered toge' ther in the North into a round Form, and the
- Wind feeming to come all againft them as it were
- by Reflexion : the Sea being faint in deceifful
' Calms. The Sailors not knowing the Tempefts
' that ufed to rage there, fpread their Sails to ga-
' ther the Wind; when on a fudden the Wind
' broke out from the Clouds in the North on four
- Ships whofe Tackling was not in order to be ' handed, and overfet them in a Moment; ' and tho' the reft were looking on, yet not one ' of a great many could be faved from death, ' except a few that had Oars or broken Pieces ' of Sails thrown to them. The North Wind ' continuing, the Sea rofe fometimes high as it ' were to the Stars ; and again fell low to the Bot' tom; the Sea looked black in the Day-time, ' and fiery in the Night, which Storm held them ' twenty Days.' So far Maffeus.
T HE Cape of Good-Hope is difaftrous for fuch Storms from the Clouds.

NOT far from the Shore there is a high Mountain, broad on the Top like a Table, from which great Storms often proceed; and this prognofticates ftrangely. For when the Sky is clear, and the Sea fmooth, there is a little Cloud feen on the Top of the Hill, which appears at firt no larger than a Hazel Nut, and then like a Walnut which the Dutch call the $O x$-eye; and then covers the whole Plain above, and the Dutcb compare it to a Table fpread with all kinds of Meat on it : then the Storms begin to blow from the Top of the Mountain with fuch Force that overwhelms all Ships that are not on their Guard, or have their Sails out; but Sailors are now more wary, and when they fee the $O x$-eye, they run immediately from the Shore as much as they can, and gather in their Sails, and do what is proper to defend fend their Ships: nor does this Sign ever fail. The like Storm rages at Terra de Natal, having the Ox-eye there alfo; and by it feveral Ships have been loft; and likewife in the whole Tract between that and the Cape of Good-Hope. There is alfo in Daupbiné in France, not far from Vienne, a high Mountain, on whofe Top there is a Lake, from which all the Storms thereabouts arife; on the Top of it there is a little Cloud or Exhalation, which portends Thunder and Rain.

ON the Sea under the Equator, between Americic and Africa, and near the Equator; there are frequently fuch Storms ; efpecially in thofe Months in which there are few or no conftant Winds biowing; and that almoft thro' the whole Year, efpecially in April, May, and June, (in other Months "tis more rare) and they are very remarkable on the Shores of Guinea. They break forth three or four times in a Day, and ceafe on a fudden, varying ordinarily every half Hour ; but they are moft vehement at firft. They break out from the black and filthy Clouds that appear when the Sky is clear and the Sea calm, by which the Seamen know they are approaching. And with their help it is that Sailors get beyond the Equator; for other conftant Winds are often wanting, efpecially in thofe three Months, for they do not hinder the Ships failing except at the firft breaking out.

BUT in that part of the Sea which is next the Kingdom of Loango, in Africa, the Storm is often in the Months of Fanuary, February, March, April, and in different Places of Africa at other times.

THUS likewife at a Promontory in Africa, called now Guardafu, not far from the Month of the RedSca, there rages in the Month of May every Year a North Wind, and the Ecnepbias moit vehemently.

F OR 'tis obfervable, that as fome Winds lefs forcible blow yearly; fo there are Storms and Tem-
pefts Storm, not far from that Cape, did Sodreus, the Portuguefe Conful, perifh in the Year 1505; and tho' he was admonifhed by the Africans, yet he would not hearken to it.

BUT in the Entrance of the Arabian Gulph, and in Arabia, and Etbiopia, there is a peculiar and wonderful Storm happens. A thick black Cloud, mixed with fiery little Clouds (which are terrible to behold), brings Darknefs in the Day, and on a fudden there breaks out a Storm, which is foon over; but it throws fuch a quantity of red Sand on the Land and Sea, that the Arabians fay it fometimes buries whole Companies of Merchants and Travellers, with their Camels, viz. the Caravans that pafs there once or twice a Year, being gathered (out of all parts of Afia) in Syria, they arrive thence from Aleppo to Arabia, to the Number of fix thoufand Men, who dare not travel by themfelves, becaufe of the Robberies by the Arabians, and other Dangers, as they do from India to Cbina and Tartary: and from hence 'tis they fay the Arabian and Egyptian Mummy comes; their Bodies being dryed in the Sand with the Sun's Heat. This Storm comes from the North to which the Red-Sea is extended ; and therefore 'tis likely, there being a great quantity of red Sand on that Shore, that 'tis carried up by the Wind, which caufes a red Colour to appear among the Clouds, and afterwards falls down.

A ND 'tis alfo probable, that there is fuch a Storm of Sand in Libya, becaufe of the great Heaps of that Sand there ; which the Antients knew when they wrote of the difficult accefs to the Temple of Fupiter Hammon in Libya: nor were they without the knowledge of the way how Mummy was made. In Guzarat, a Kingdom in India, Clouds of Sand, or a vaft quantity of fmall Duft raifed by the Sun's

Heat, Heat, doth often opprefs Travellers; as is written by $T_{\text {wift }}$ a Dutcbman, who lived long there.

A S to the Caufe of thefe Storms, 'tis plain they come from the Clouds, and may be formed two ways. 1. If a Cloud falls down, by it's Weight it will move the Air under it, as a Sheet, or Sail, let fall; and hence 'tis the fmaller the Cloud appears the Storm after it is the greater; for the Cloud, or $O x$ cye, is then high, and appears fmall, and falling down, moves the Air with greater force. 2. If fulphureous Spirits inclofed in the Cloud, break out on a fudden in one Place, other Parts being fhut as the Wind breaks out of a Bottle, when the Liquor in it is heated ; but the firft Caufe feems the truer.

PROPOSITION XI.

Exhydrias is a Wind that breaks out of a Cloud with a great quantity of Water.
T H IS differs but little from an Ecnepbias; onIy the Cloud, from which it feems to break out, is now condenfed to Water, and born up fo long by the Clouds about it, and perhaps forced together by the Winds, 'till at laft it falls down, and beats the Air below it, which caufes the Wind: but thefe are rare, and the Ecnepbias itfelf hath often Showers attending it, and therefore the Difference is only in Degree; except that the Exbydrias for the moft part comes ftrait down.

PROPOSITION XII.

A Typhon is a firong fwift Wind tbat blowes from all Points, wandring about all quarters and generally comes from above.
THIS is frequent in the Oriental Sea, efpecially in the Sea at Siam, Cbina, and Japan, and between Malacca and $7 a p a r$. It breaks out violently almoft from the weftern Point, and turning round the Horizon with a rapid Force performs the Revolution in twenty Hours ; ftill growing ftronger and ftronger; raifing thofe Seas with it's ftrong whirling about, to a great Height, every tenth Wave rifing above the reft, which dafhing againft one another with great force the Seamen lofe all hopes of their Lives; for which, and other Storms, failing from India to Fapan is very dangerous; fo that if one Ship of three get fafe there, 'tis counted to be a profperous Voyage. The Typbon rages moft in Summer, and more than can be conceived by thofe who have not feen it; fo that 'tis no wonder the Ribs of the ftrongeft and largeft Ships fhould be loofened : you would think the Heavens and Earth were turned to their antient Cbaos.

I T rages not only at Sea, but on Land, and overturns Houfes, and pulls up Trees by the Roots, and carries great Ships a quarter of a Mile from the Sea.

IT feldom lafts above fix Hours. In the Indian Ocean the Sea is at firft plain : but there come afterwards dreadful Waves. Thus about the Town of Arbeil in Perfia, in the Months of Fune and Fuly, it raifes a great deal of Duft every Day at twelve of the Clock; and lafts one Hour.

THE Caufe of it, no doubt, is that the Wind ruthing to a certain Point, is obftructed, and returns on it felf, and is thus turned round, as we fee in Water that turns round about in a Vortex, when it meets with an Obftacle; or it may come from furious Winds meeting one another, which renders the Sea plain, and dafhes againft the Ships between them. If this Wind blow from above, 'tis called Catagis.

PROPOSITION XIII.

Whetber fome Winds came from tbe Earth, eitber from tbe Land or Water.

W E think this is very eafy to conceive; for feeing there are in the Earth, and at the Sea Bottom, fe- veral Cavities; there may bein them fulphureous Spirits, which may break out violently, efpecially if a little hindered at firtt: and if much hindered this caufes an Earthquake, "till at laft they make way for themfelves. Thus in the Maurice Iftes there often breaks out a Smoak from the Earth; and alfo from fome Caverns. In fapan there is a Fountain that breaks out at certain Hours of the Day, with great Force and Noife.
BUT I do not remember to have read of any Wind coming out of the Sea.
PROPOSITION XIV.

Wbether any Wind arifes from the Tides, or the flowing of Rivers.
EXPERIENCE teftifies, that in thofe Places where the Tides are fenfible, when the Sea flows, the Wind doth for the moft part blow from the Sea, when other Winds ceafe; and therefore it feems the Air that is contiguous to the Water flows with it to the fame Point: but 'tis to be confidered, whether that happens conftantly. And I believe there may be another caufe given of thatWind, viz. That the Air is driven from it's Place by the Water that flows in on the Land : for a fmall matter moves the Air; and thus'tis thought the Air moves with the Rivers that run fwiftly, as the Zaire and Rbine.
PROPOSITION XV.

Why tbe fiery Appearances Cattor, Pollux, and Helena, and what they call Jack in the Lanterns appear amidft Storms.
NOT one, but a great many, are feen on the Mafts of Ships, wandring with an uncertain Motion, tho' they feem fometimes to cleave clofe to the Sails and Mafts; but they frequently leap up and down, with intermiffion, affording an obfeure Flame, like

Chap. 21. of Univerfal Geography. that of a Candle burning faintly. If five of them are feen together, which the Portuguefe call the Virgin Mary's Crown, they take it for a fure Sign of the Storm being foon over. Their Caufe is fome fulphureous and bituminous Matter beat down by the Motion of the Air above, and gathering together is kindled by the Agitation of theAir; as Butter is gather'd together by the Agitation of the Cream. And from this Appearance we gather, that thefe Storms come from fulphureous Spirits that rarify the Air, and put it into a Motion.

PROPOSITION XVI.

Why Calms are So frequent in the Sea near Guinea, and under the Equator, in the Atlantic Ocean between America and Africa.

TH IS is a Phænomenon concerning theWinds, of no fmall difficulty ; that at Guinea, which istwo Degrees from the Equator, and under the Equator itfelf, there fhould be almof a coniftant Calm, efpecially in April, May, and June, where there are no Monfoons, and when the like is not found in other Places fituated under the Equator. There is indeed an Ecnepbias pretty frequent there fometimes; and is defired by Seamen, becaufe by the help thereof they get beyond the Equator: for fometimes going from Europe to India, they are kept a whole Monthunder the Equator: but they take care to keep from the Coaft of Guinea; and without lofs of time fail towards the Coaft of Brazil, to avoid being becalmed ; which hath kept fome Ships three Months near the Shore. I have not yet found the reafon of it, except it may by faid, that there is no Snow found on the Mountains of Africa, between Guinea and Barbary; which may caufe a conftant Wind.

528 T'be Abfolute Part, \&c. Sect. VI.

PROPOSITION XVII.

In fome Countries the Storms are anniverfary.

W E gave Examples of this before, viz. 1. Concerning the changing of the Monjoons. 2. Of the Ecnepbias. 3. Of the Typbon. 4. At the Cape of GoodHope, in $\mathcal{F u n e}$ and $\mathcal{F u l y}$. 5. In the Ifland of Del Mayo at the latter end of Auguft; to which add, 6. The Storms at Tercera, in Auguf. 7. In thirty five Degrees of the Meridian of Triftan de Cunba. And in the Month of May, at New-Moon, the Weft Wind rages, and fwallows up Ships; but in thirty three Degrees on the fame Meridian the North and North-Eaft. 8. At Pulon Timor, in the Cbinefe Sea the Weft Winds rage in fure and $\mathcal{F u l y}$, and are dangerous. 9. Between Cbina and fapan there are feveral Storms from the New Moon in fuly, to the twelfth Day of the Moon. 10. If, in the fame Place, other Winds befides the Monfoons blow fometimes from one Point, and fometimes from another, 'till they fettle in the North-Eaft, a Storm certainly happens.

The End of the Firf Yolume.

University of California
SOUTHERN REGIONAL LIBRARY FACILITY Return this material to the library from which it was borrowed.

OIL JAN 211991
JUL 249999

AC MAY 1.2005

[^0]: (o) Euslid. Prop. 32. Lib. i.
 (p) Ibid. Prop. 18. Lib. iii.

[^1]: (r) The leaft Part of Englifh Meafure is a Barley-Corn, taken out of the middle of the Ear
 and well dried; whereof 3 in
 Length make and Inch, Esic. as
 in the following Table.
 A Table

[^2]: * Ferdinando Magellan was the firt who failed round the Earth, in the Year 1519. he performed it in 1124 Days. Sir Francis Drake was the next, in the Year 1577. and he performed it in 1056 Days. The fame was afterwards done by Sir Tbomas Cavendiff, in the Year 1586 ; in the Space of 777 Days. It was done again by Mynheer

 Simon Cordes in the Year 1590. By Oliver Noort, Anno 1598. By Cornel Scbarten, Anno1615, And by facob Heremites, Anno 1623 ; and all by directing their Courfe conflantly from Eaft to $W_{e f f}$; and thus returned into Europe, having all along obferved the Phænomena which neceffarily arife upon fuppofing the Earth a spberical Body.

[^3]: * Arother Argument is 'follow, that one (too valt a drawn from the commodious (Part) would be drowned; and and equal Diftricution of the Waters in the Eirth. 'For -fince, by the Law of Gra' vity, the Waters will por-- feis the lowelt place; there-- fore, if the Mafs of the Earth - was cubic, prifmatic, or any - other angular Figure, it would
 ' another too dry. But being ' thus orbicular, the Waters - are equally and commodioufly - diftributed here and there ac-- cording as the Divine Provi' dence faw moft fit. Derban's - Pbyfico-Tbeology, Book 2. Ch. - 1. Art. 2.

[^4]: "Day became prefently as dark " as the Night; wbich Cbange " bad been predifted by Thales "to the Ionians." This was about 594 Years before Chrift ; which fhews us that the Philofophers in thefe early Times were not ignorant of the true Figure of the Earth.

[^5]: * The three following Terreftrial Methods, are more to be admired for their Theory, than for any Truth in their Practice. For tho' they be all Geometrically true ; yet Refraction and want of Accuracy, in taking the

 Height and Horizontal Diftances of Mountains, hinder the Exactnels which is required in a Matter of fuch Nicety.
 (b) Euclid. Lib. 6. Prop. 8.
 (c) Euclid, Coroll. to Prop. 8. Lib. 6.

[^6]: * According to our Norwood, and the Famous Caffini, the Meafures are thus; the Diamethe Surface, 199,444,208 Miles; and the folid Content, 264,856,000,000 Miles.

[^7]: * By Article 44 of Cbap. ji: above.

[^8]: (b) See Note (d) Chap. viii.

[^9]: (a) By the Definition of a (b) By the Definition of a Circle Chap. ii. Article 3. Globe Chap. ỉi. Article 12.

[^10]: (b) The Earth and Ocean are highelt about the Equator. See the Note (b) on Chap. iii.

[^11]: * Dr Derbam in his Pby. Months, as to change the WaTheol. lib. iv. c. 11, Note (n) faith, the Infects that for the molt part difcolour the Waters, are the fmall Infects of the Sbrimp-Kind, called, by Swammerdam, Pulex aquaticus arborefcens. Which are fometimes fo numerous in the Summer ; a horrible Rumour; and Q 2 : when

[^12]: (b) See the true Reafon of this in Artic. 3. of Note (f) above.

[^13]: taken for the upper Part of the Nile) meeting with the Mountains of Nimeamay, is faid to divide itfelf into feveralftreams, and immerge under them, and to emerge again on the Nortb fide of the Mountains. But I do not write this as a Certainty.

[^14]: - Height, caufing a prodigious
 - Noife, but thro' Lazver Egypt
 - it lidesalongwith svery gentle
 - Stream, and Paffengersare fel-
 - dom furprized byTempefts on - it 'Tis obferved, the Water - is very thick and muddy, efpe-
 - cially when it is fwelled by - thofe heavy Rains which con-- ftantly fall within the Tropics - in the beginning of the Sum-- mer; and thefe are the Occa-- fion ofit's overflowing thelow - Lands of Egypt annually.:

[^15]: - I am the larger upon this,
 - becaufe it feems to point out
 - the trueReafon of Petrifaction;
 - for is it not hence reafonable - to fuppofe? that the Water - gleeting down the fides of the
 - foft Stone, corrodes the minu-
 - telt of it's Particles, and isim-
 - pregnated with them; which
 - are again feparated from the
 - Water, by putting fticks of
 - Wood into it, (by the Power
 - of Attracting) as we fee fome
 - kinds of Salt reparated from
 - Water by the like Means, and
 - other Bodies feparated from
 - thofe that are compounded
 - with them, by fuch as are
 - found by Experience to attract
 - their Particles. Now when
 - thefe Particles are fo minute
 - and fubtile, as to intrude with
 - the Water into the Pores of
 - theWood, in procefs of Time,
 - when it is throughly foaked,
 - the Interfices will be quite
 - filled with fonyParticles ; and
 - if any thing ligneous remain,
 - it is fo well guarded and in-
 - cruftated by thefe Particles
 ! that it is not perseptible, nor
 - to be acted upon by Fire: but
 - if (as in the prefent Cafe) the
 - Particles are not fo minute as
 - to penetrate the Pores of the
 - Wood, they only ftick clofe
 - to the outide of it, and parget
 - it over (as it were) by degrees
 - to a confiderable thicknefs.
 - What ftrengthens this Opi-
 - nion very much is ; that the
 - Particles of the Cafe or Cruft,
 - when ground to powder, are,
 - to all appearance, like the Par-
 - ticles of the Stone from
 - whence theWaterdrops, only
 - the later is fomething whiter
 - and rounder.
 - Is not therefore fuch fub-
 - terraneous Earth as this, thro
 - which the Water, of fuch like
 - Qualities, runs, the Caufe of
 - Petrifaction ?
 - Becaule we may gather
 - from hence the Reafons why
 - Fountains petrify fome forts
 - of Wood throughout, but not
 - others; allo why fome petri-
 - fy only the Bark, Sap, or
 - fofteft Part, and others only
 - iucafe it, E\%\%.

[^16]: * There is faid to be one like this near Guadolaxara in Nero Caftile.

[^17]: * Wallis's Hydroft. Prop. 13. \dagger Pbilof. Tranfact. No $18 \mathbf{1}$.

[^18]: * Hift de l'Acad. Roy. 1703, and 1703.

